

Functional Description

The 74VCX32244 contains thirty－two non－inverting buffers with 3－STATE outputs．The device is nibble（ 4 bits）con－ trolled with each nibble functioning identically，but indepen－ dent of each other．The control pins may be shorted together to obtain full 32 －bit operation．The 3－STATE out－
puts are controlled by an Output Enable $\left(\overline{\mathrm{OE}}_{\mathrm{n}}\right)$ input．When $\overline{\mathrm{OE}}_{\mathrm{n}}$ is LOW，the outputs are in the 2 －state mode．When $\overline{\mathrm{OE}}_{\mathrm{n}}$ is HIGH，the standard outputs are in the high imped－ ance mode but this does not interfere with entering new data into the inputs．

Logic Diagrams

Note：Please note that these diagrams are provided only for the understanding of logic operations and should not be used to estimate propagation delays．

Absolute Maximum Ratings(Note 4)	
Supply Voltage (V_{CC})	-0.5 V to +4.6 V
DC Input Voltage (V_{1})	-0.5 V to +4.6 V
Output Voltage (V_{0})	
Outputs 3-STATED	-0.5 V to +4.6 V
Outputs Active (Note 5)	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Input Diode Current (I_{K}) $\mathrm{V}_{1}<0 \mathrm{~V}$	$-50 \mathrm{~mA}$
DC Output Diode Current (lok)	
$\mathrm{V}_{\mathrm{O}}<0 \mathrm{~V}$	$-50 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{Cc}}$	$+50 \mathrm{~mA}$
DC Output Source/Sink Current	
($\mathrm{l}_{\mathrm{OH}} / \mathrm{l}_{\mathrm{OL}}$)	$\pm 50 \mathrm{~mA}$
DC $\mathrm{V}_{\text {CC }}$ or GND Current per	
Supply Pin (lcc or GND)	$\pm 100 \mathrm{~mA}$
Storage Temperature Range ($\mathrm{T}_{\text {STG }}$)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions (Note 6)

Power Supply	
\quad Operating	1.2 V to 3.6 V
Input Voltage	-0.3 V to +3.6 V
Output Voltage $\left(\mathrm{V}_{\mathrm{O}}\right)$	
Output in Active States	0 V to V_{CC}
Output in 3-STATE	0.0 V to 3.6 V
Output Current in $\mathrm{I}_{\mathrm{OH}} / \mathrm{l}_{\mathrm{OL}}$	
$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	$\pm 24 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	$\pm 18 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 2.3 V	$\pm 6 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{CC}}=1.2 \mathrm{~V}$	$\pm 100 \mu \mathrm{~A}$
Free Air Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Minimum Input Edge Rate $(\Delta \mathrm{t} / \Delta \mathrm{V})$	

$$
\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V} \text { to } 2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}
$$

$10 \mathrm{~ns} / \mathrm{V}$
Note 4: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.
Note 5: I_{O} Absolute Maximum Rating must be observed.
Note 6: Floating or unused inputs must be held HIGH or LOW
DC Electrical Characteristics (2.7v < $\mathrm{v}_{\mathrm{cc}} \leq 3.6 \mathrm{~V}$)

Symbol	Parameter	Conditions	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & (\mathrm{~V}) \end{aligned}$	Min	Max	Units
$\overline{\mathrm{V}_{\mathrm{IH}}}$	HIGH Level Input Voltage		$\begin{gathered} \hline 2.7-3.6 \\ 2.3-2.7 \\ 1.65-2.3 \\ 1.4-1.6 \\ 1.2 \end{gathered}$	2.0 1.6 $0.65 \times V_{C C}$ $0.65 \times V_{C C}$ $0.65 \times V_{C C}$		V
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage		$\begin{gathered} \hline 2.7-3.6 \\ 2.3-2.7 \\ 1.65-2.3 \\ 1.4-1.6 \\ 1.2 \end{gathered}$		0.8 0.7 $0.35 \times \mathrm{V}_{\mathrm{CC}}$ $0.35 \times \mathrm{V}_{\mathrm{CC}}$ $0.05 \times \mathrm{V}_{\mathrm{CC}}$	V
$\overline{\mathrm{V} \text { OH }}$	HIGH Level Output Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-18 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \end{aligned}$	$\begin{gathered} \hline 2.7-3.6 \\ 2.7 \\ 3.0 \\ 3.0 \end{gathered}$	$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}}-0.2 \\ 2.2 \\ 2.4 \\ 2.2 \end{gathered}$		V
		$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-6 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-18 \mathrm{~mA} \end{aligned}$	$\begin{gathered} 2.3-2.7 \\ 2.3 \\ 2.3 \\ 2.3 \end{gathered}$	$\begin{array}{c\|} \hline \mathrm{V}_{\mathrm{CC}}-0.2 \\ 2.0 \\ 1.8 \\ 1.7 \\ \hline \end{array}$		
		$\begin{aligned} & \mathrm{l}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-6 \mathrm{~mA} \end{aligned}$	$\begin{gathered} \hline 1.65-2.3 \\ 1.65 \end{gathered}$	$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}}-0.2 \\ 1.25 \end{gathered}$		
		$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA} \end{aligned}$	$\begin{gathered} 1.4-1.6 \\ 1.4 \end{gathered}$	$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}}-0.2 \\ 1.05 \\ \hline \end{gathered}$		
		$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	1.2	$\mathrm{V}_{\mathrm{CC}}-0.2$		

DC Electrical Characteristics (Continued)						
Symbol	Parameter	Conditions	$v_{c c}$ (V)	Min	Max	Units
$\mathrm{V}_{\text {OL }}$	LOW Level Output Voltage	$\begin{aligned} & \mathrm{l}_{\mathrm{OL}}=100 \mu \mathrm{~A} \\ & \mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{OL}}=18 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA} \\ & \hline \end{aligned}$	$\begin{array}{c\|} \hline 2.7-3.6 \\ 2.7 \\ 3.0 \\ 3.0 \end{array}$		$\begin{gathered} \hline 0.2 \\ 0.4 \\ 0.4 \\ 0.55 \end{gathered}$	V
		$\begin{aligned} & \hline \mathrm{OL}=100 \mu \mathrm{~A} \\ & \mathrm{IOL}=12 \mathrm{~mA} \\ & \mathrm{l}=18 \mathrm{~mA} \\ & \hline \end{aligned}$	$\begin{gathered} \hline 2.3-2.7 \\ 2.3 \\ 2.3 \\ \hline \end{gathered}$		$\begin{aligned} & \hline 0.2 \\ & 0.4 \\ & 0.6 \end{aligned}$	
		$\begin{aligned} & \mathrm{l}_{\mathrm{OL}}=100 \mu \mathrm{~A} \\ & \mathrm{l}_{\mathrm{OL}}=6 \mathrm{~mA} \end{aligned}$	$\begin{array}{c\|} \hline 1.65-2.3 \\ 1.65 \end{array}$		$\begin{aligned} & \hline 0.2 \\ & 0.3 \end{aligned}$	
		$\begin{aligned} & \hline \mathrm{lQL}=100 \mu \mathrm{~A} \\ & \mathrm{l}_{\mathrm{OL}}=2 \mathrm{~mA} \\ & \hline \end{aligned}$	$\begin{array}{c\|} \hline 1.4-1.6 \\ 1.4 \\ \hline \end{array}$		$\begin{gathered} \hline 0.2 \\ 0.35 \end{gathered}$	
		${ }^{\text {OLL }}=100 \mu \mathrm{~A}$	1.2		0.05	
1	Input Leakage Current	$0 \leq \mathrm{V}_{1} \leq 3.6 \mathrm{~V}$	1.2-3.6		± 5.0	$\mu \mathrm{A}$
loz	3-STATE Output Leakage	$\begin{aligned} & 0 \leq \mathrm{V}_{\mathrm{O}} \leq 3.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	1.2-3.6		± 10	$\mu \mathrm{A}$
loff	Power-OFF Leakage Current	$0 \leq\left(\mathrm{V}_{\mathrm{l}}, \mathrm{V}_{\mathrm{O}}\right) \leq 3.6 \mathrm{~V}$	0		10	$\mu \mathrm{A}$
lcc	Quiescent Supply Current	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND	1.2-3.6		40	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}} \leq\left(\mathrm{V}_{1}, \mathrm{~V}_{\mathrm{O}}\right) \leq 3.6 \mathrm{~V}$ (Note 7)	1.2-3.6		± 40	
$\Delta^{\Delta} \mathrm{l}_{\text {cc }}$	Increase in I_{CC} per Input	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$	2.7-3.6		750	$\mu \mathrm{A}$

AC Electrical Characteristics (Note 8)

Symbol	Parameter	Conditions	V_{CC} (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Figure Number
				Min	Max		
$t_{\text {PHL }}$, $t_{\text {PLH }}$	Propagation Delay	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	3.3 ± 0.3	0.8	2.5	ns	Figures 1, 2
			2.5 ± 0.2	1.0	3.0		
			1.8 ± 0.15	1.5	6.0		
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	1.5 ± 0.1	1.0	12.0		Figures5,6
			1.2	1.5	30		
$t_{\text {PZL }}$, $t_{\text {PZH }}$	Output Enable Time	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	3.3 ± 0.3	0.8	3.5	ns	Figures$1,3,4$
			2.5 ± 0.2	1.0	4.1		
			1.8 ± 0.15	1.5	8.2		
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	1.5 ± 0.1	1.0	16.4		Figures 5, 6, 7
			1.2	1.5	41		
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLZ}}, \\ & \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Output Disable Time	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	3.3 ± 0.3	0.8	3.5		Figures$1,3,4$
			2.5 ± 0.2	1.0	3.8		
			1.8 ± 0.15	1.5	6.8		
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	1.5 ± 0.1	1.0	13.6		Figures 5, 7, 8
			1.2	1.5	34		

Note 8: For $\mathrm{C}_{\mathrm{L}}=50_{\mathrm{P}} \mathrm{F}$, add approximately 300 ps to the AC maximum specification.

Symbol	Parameter	Conditions	$\mathrm{V}_{\text {cc }}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	Units
			(V)	Typical	
$\mathrm{V}_{\text {OLP }}$	Quiet Output Dynamic Peak V_{OL}	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	1.8	0.25	V
			2.5	0.6	
			3.3	0.8	
$\mathrm{V}_{\text {OLV }}$	Quiet Output Dynamic Valley V_{OL}	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	1.8	-0.25	V
			2.5	-0.6	
			3.3	-0.8	
$\mathrm{V}_{\text {OHV }}$	Quiet Output Dynamic Valley V_{OH}	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	1.8	1.5	V
			2.5	1.9	
			3.3	2.2	
Capacitance					
Symbol	Parameter	Conditions		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	Units
				Typical	
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=1.8,2.5 \mathrm{~V}$ or $3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}		6	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}, 2.5 \mathrm{~V}$ or 3.3 V		7	pF
C_{PD}	Power Dissipation Capacitance	$\mathrm{V}_{1}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{f}=10 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}, 2.5 \mathrm{~V}$ or 3.3 V		20	pF

AC Loading and Waveforms ($\mathrm{V}_{\mathrm{Cc}} 3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ to $1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}$)

TEST	SWITCH
$\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\mathrm{PHL}}$	Open
$\mathrm{t}_{\text {PZL }}, \mathrm{t}_{\mathrm{PLZ}}$	6 V at $\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V} ;$
	$\mathrm{V}_{\mathrm{CC}} \times 2$ at $\mathrm{V}_{\mathrm{CC}}=2.5 \pm 0.2 \mathrm{~V} ; 1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}$
$\mathrm{t}_{\text {PZH }}, \mathrm{t}_{\mathrm{PHZ}}$	GND

FIGURE 2. Waveform for Inverting and Non-Inverting Functions

FIGURE 3. 3-STATE Output High Enable and Disable Times for Low Voltage Logic

FIGURE 4. 3-STATE Output Low Enable and Disable Times for Low Voltage Logic

Symbol	$\mathrm{V}_{\mathbf{C C}}$		
	$\mathbf{3 . 3 V} \pm \mathbf{0 . 3 V}$	$\mathbf{2 . 5 V} \pm \mathbf{0 . 2 V}$	$\mathbf{1 . 8 V} \pm \mathbf{0 . 1 5 V}$
V_{mi}	1.5 V	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{mo}}$	1.5 V	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{X}}$	$\mathrm{V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.15 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{Y}}$	$\mathrm{V}_{\mathrm{OH}}-0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$

AC Loading and Waveforms ($\mathrm{V}_{\mathrm{CC}} 1.5 \pm 0.1 \mathrm{~V}$ to 1.2 V)

TEST

TEST	SWITCH
$\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$	Open
$\mathrm{t}_{\text {PZL }}, \mathrm{t}_{\text {PLZ }}$	$\mathrm{V}_{\mathrm{CC}} \times 2$ at $\mathrm{V}_{\mathrm{CC}}=1.5 \pm 0.1 \mathrm{~V}$
$\mathrm{t}_{\text {PZH }}, \mathrm{t}_{\mathrm{PHZ}}$	GND

FIGURE 5. AC Test Circuit

FIGURE 6. Waveform for Inverting and Non-Inverting Functions

FIGURE 7. 3-STATE Output High Enable and Disable Times for Low Voltage Logic

FIGURE 8. 3-STATE Output Low Enable and Disable Times for Low Voltage Logic

Symbol	$\mathbf{V}_{\mathbf{C C}}$
	$\mathbf{1 . 5 V} \pm \mathbf{0 . 1 V}$
V_{mi}	$\mathrm{V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{mo}}$	$\mathrm{V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{X}}$	$\mathrm{V}_{\mathrm{OL}}+0.1 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{Y}}$	$\mathrm{V}_{\mathrm{OH}}-0.1 \mathrm{~V}$

Physical Dimensions inches (millimeters) unless otherwise noted

NOTES:
A. THIS PACKAGE CONFORMS TO JEDEC M0-205
B. ALL DIMENSIONS IN MILLIMETERS
C. LAND PATTERN RECOMMENDATION: NSMD (Non Solder Mask Defined)
.35MM DIA PADS WITH A SOLDERMASK OPENING OF .45MM CONCENTRIC TO PADS
D. DRAWING CONFORMS TO ASME Y14.5M-1994

BGA96ArevE
96-Ball Fine-Pitch Ball Grid Array (FBGA), JEDEC MO-205, 5.5mm Wide Package Number BGA96A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
