Low Voltage, Timing-Safe™ Peak EMI reduction IC

Functional Description

P3P76Z11D/DH is a versatile low voltage peak EMI reduction IC based on Timing–Safe technology. P3P76Z11D/DH accepts one input from an external reference, and locks on to it delivering a 1x Timing–Safe output clock. P3P76Z11D/DH has a Frequency Selection (FS) control that facilitates selecting one of the two frequency ranges within the operating frequency range. Refer frequency Selection table. The device has an SSEXTR pin to select different deviations depending upon the value of an external resistor connected at this pin to GND. P3P76Z11D/DH has a DLY_CTRL for adjusting the Input–Output clock delay, depending upon the value of the capacitor connected at this pin to GND. PD# / OE provide the Power Down option. Outputs will be tri–stated when power down is active.

P3P76Z11D is a Low drive part and P3P76Z11DH is a High drive part. Refer to *DC/AC Electrical characteristic* table.

P3P76Z11D/DH operates over a supply voltage range of 1.8 V \pm 0.2 V, and is available in an 8 Pin WDFN (2 mm x 2 mm) Package.

General Features

- 1x, LVCMOS Timing-Safe Peak EMI Reduction
- Input Clock Frequency: 15 MHz – 75 MHz
- Output Clock Frequency(Timing-Safe): 15 MHz 75 MHz
- Analog Frequency Deviation Selection
- Analog Input-Output Delay Control
- Power Down option for Power Save
- Low and High drive parts
- Supply Voltage: $1.8 \text{ V} \pm 0.2 \text{ V}$
- 8 pin WDFN(2 mm x 2 mm) package
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

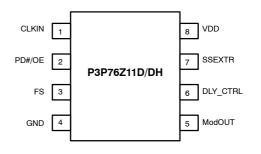
Application

• P3P76Z11D/DH is targeted for use in consumer electronic applications like mobile phones, Camera modules, MFP and DPF.

ON Semiconductor®

http://onsemi.com

WDFN8 CASE 511AQ


MARKING DIAGRAMS

CC = Specific Device Code

M = Date Code= Pb-Free Device

PIN CONFIGURATION

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 9 of this data sheet.

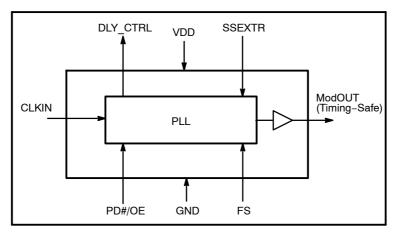


Figure 1. Block Diagram

Table 1. PIN DESCRIPTION

Pin#	Pin Name	Туре	Description
1	I	CLKIN	External reference Clock input.
2	I	PD# / OE	Power Down. Pull LOW to enable Power Down. Outputs will be tri-stated when power down is enabled. Pull HIGH to disable power down and enable output. Has NO default state.
3	I	FS	Frequency Select (see Frequency Selection table for details). Has NO default state.
4	Р	GND	Ground
5	0	ModOUT	Buffered modulated Timing-Safe clock output
6	0	DLY_CTRL	External Input-Output Delay control
7	I	SSEXTR	Analog Spread Selection through external resistor to GND.
8	Р	VDD	Supply Voltage

Table 2. FREQUENCY SELECTION TABLE

FS	Frequency (MHz)		
0	15 – 30		
1	30 – 75		

Table 3. OPERATING CONDITIONS

Symbol	Description		Max	Unit
V _{DD}	Supply Voltage	1.6	2	V
T _A	Operating Temperature	0	+70	°C
C _L	Load Capacitance		15	pF
C _{IN}	Input Capacitance		7	pF

Table 4. ABSOLUTE MAXIMUM RATING

Parameter	Min	Max	Unit
Supply Voltage to Ground Potential	-0.3	+2.7	V
DC Input Voltage(CLKIN)	-0.3	+2.7	V
DC Input Voltage (Except CLKIN)	-0.3	VDD + 0.3	V
Storage Temperature	-65	+150	°C
Max. Soldering Temperature (10 sec)		260	°C
Junction Temperature		150	°C
Static Discharge Voltage (As per JEDEC STD22- A114-B)		2000	V

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Table 5. DC ELECTRICAL CHARACTERISTICS FOR V_{DD} = 1.8 V \pm 0.2 V

Symbol	Parameter	Test Co	Test Conditions		Тур	Max	Unit
V_{DD}	Supply Voltage				1.8	2	V
V _{IH}	Input HIGH Voltage						V
V _{IL}	Input LOW Voltage					0.35 * V _{DD}	V
I _{IH}	Input HIGH Current	V _{IN} =	= V _{DD}			5	μΑ
I _{IL}	Input LOW Current	V _{IN}	V _{IN} = 0 V			5	μΑ
V _{OH}	Output HIGH Voltage	I _{OH} = -8 mA	I _{OH} = -8 mA (P3P76Z11D)				V
		I _{OH} = -16 mA	I _{OH} = -16 mA (P3P76Z11DH)				
V _{OL}	Output LOW Voltage	I _{OL} = 8 mA (I _{OL} = 8 mA (P3P76Z11D)			0.25 *	V
		I _{OL} = 16 mA (I _{OL} = 16 mA (P3P76Z11DH)			V _{DD}	
I _{CC}	Static Supply Current	PD# pin pu	PD# pin pulled to GND			10	μΑ
I _{DD}	Dynamic Supply Current	Unloaded Output	FS = 0, @ 15 MHz			3	
			FS = 0, @ 30 MHz			5	
			FS = 1, @ 30 MHz			4	mA
			FS = 1, @ 75 MHz		10	10	
Z _o	Output Impedance	P3P7	P3P76Z11D		23		Ω
	P3P76Z11DH			17		1	

Table 6. AC ELECTRICAL CHARACTERISTICS FOR V_{DD} = 1.8 V \pm 0.2 V

Parameter	Test Conditions				Тур	Max	Unit
Input Frequency	put Frequency FS = 0			15		30	MHz
	FS = 1					75	
ModOUT	FS = 0			15		30	
	FS = 1			30		75	
Duty Cycle (Notes 1 and 2)	Measured at V _{DD} /	2		45	(49–51)	55	%
Rise Time (Notes 1 and 2)	Measured between 20% to 80%	P3P76Z11D			1.3	2.1	ns
		P3P76Z11DH			1	1.7	
Fall Time (Notes 1 and 2)	Measured between 80% to 20%	P3P76Z11D			1.3	2.1	ns
		P3P76Z11DH			1	1.7	1
Cycle-to-Cycle Jitter	Unloaded output with SSEXTR = OPEN	FS = 0	15 MHz		±150		ps
(Note 2)			30 MHz		±100		1
			30 MHz		±150		
			75 MHz		±100		1
Input-Output propagation Delay (Note 2)	SSEXTR = OPEN, No load on DLY_CTRL and ModOUT				1.1		ns
Load line	Change in Input-Output delay (with	on DLY_CTRL			-35		ps/pF
	capacitive load ≤ 15 pF), SSEXTR = OPEN	on ModOUT			35		
PLL Lock Time (Note 2)	Stable power supply, valid clock present toggled from Low to H				1	ms	

SWITCHING WAVEFORMS

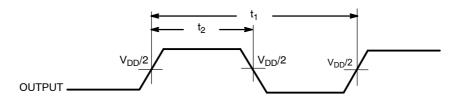


Figure 2. Duty Cycle Timing

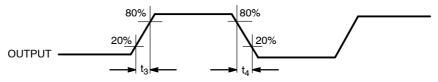


Figure 3. Output Rise/Fall Time

All parameters are specified with 15 pF loaded output.
Parameter is guaranteed by design and characterization. Not 100% tested in production.

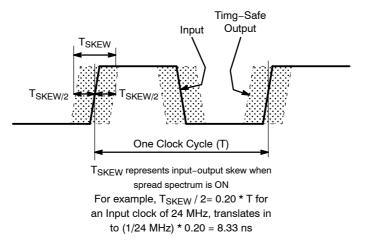


Figure 4. Input-Output Skew

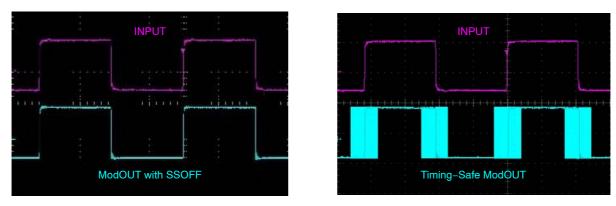
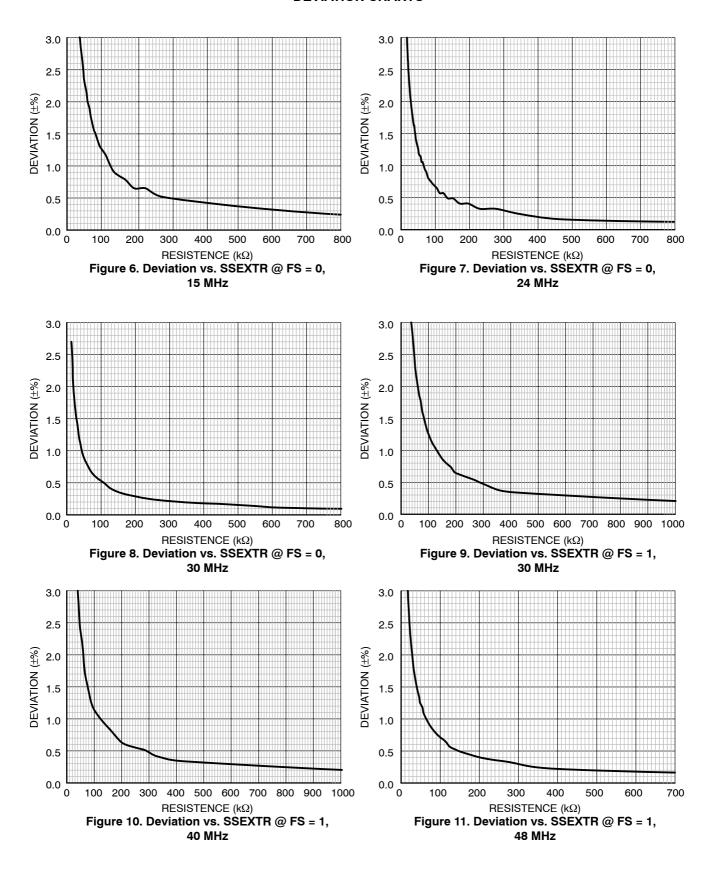
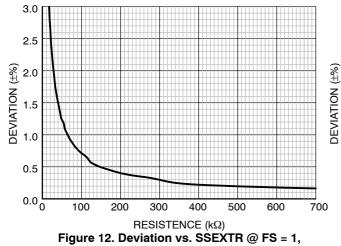
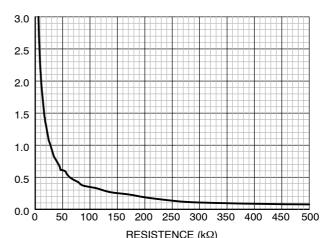
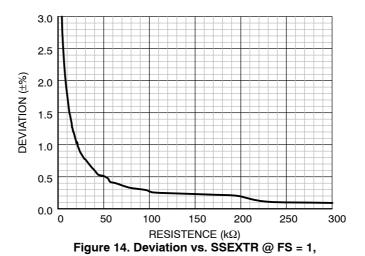
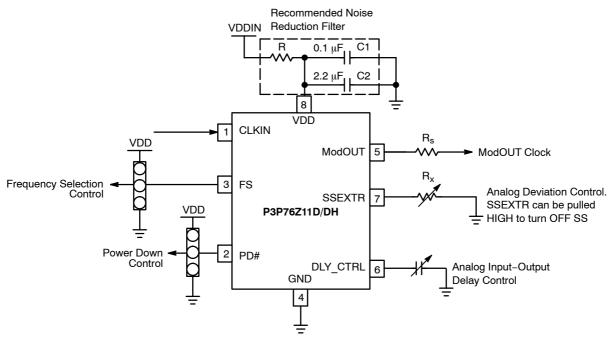




Figure 5. Typical Example of Timing-Safe Waveform


DEVIATION CHARTS


DEVIATION CHARTS

54 MHz



 $\label{eq:resistance} \text{RESISTENCE } (k\Omega)$ Figure 13. Deviation vs. SSEXTR @ FS = 1, 72 MHz

NOTE: Device–to–Device variation of Deviation and I/O delay is $\pm 15\%$.

74.25 MHz

NOTE: Refer Pin Description table for Functionality details.

Figure 15.

PCB Layout Recommendation

For optimum device performance, following guidelines are recommended.

- Dedicated VDD and GND planes.
- The device must be isolated from system power supply noise. A 0.1 µF and a 2.2 µF decoupling capacitor should be mounted on the component side of the board as close to the VDD pin as possible. No vias should be used between the decoupling capacitor and VDD pin. The PCB trace to VDD pin and the ground via should be kept as short as possible. All the VDD pins should have decoupling capacitors.
- In an optimum layout all components are on the same side of the board, minimizing vias through other signal layers.

A typical layout is shown in the figure

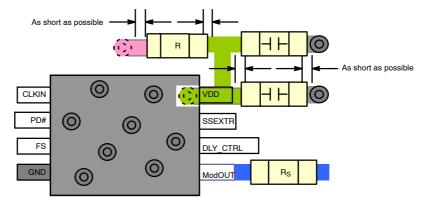
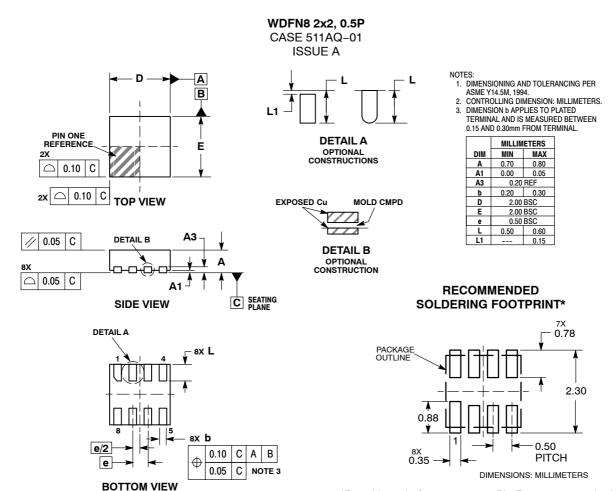


Figure 16.


ORDERING INFORMATION

Part Number	Top Marking	Temperature	Package Type	Shipping [†]
P3P76Z11DHG-08CR	FE	0°C to +70°C	8-pin (2 mm x 2 mm) WDFN (Pb-Free)	Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{*}A "microdot" placed at the end of last row of marking or just below the last row toward the center of package indicates Pb-Free.

PACKAGE DIMENSIONS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

Timing-Safe is a trademark of Semiconductor Components Industries, LLC (SCILLC).

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative