MCF547x Reference Manual

Devices Supported:
MCF5475 MCF5472
MCF5474 MCF5471
MCF5473 MCF5470

Document Number: MCF5475RM
Rev. 5
4/2009

P

How to Reach Us:

Home Page:
www.freescale.com

Web Support:

http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.

Technical Information Center, EL516

2100 East Elliot Road

Tempe, Arizona 85284

1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters
ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku,

Tokyo 153-0064

Japan

0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd.
Exchange Building 23F

No. 118 Jianguo Road

Chaoyang District

Beijing 100022

China

+86 10 5879 8000
support.asia@freescale.com

Freescale Semiconductor Literature Distribution Center
P.O. Box 5405

Denver, Colorado 80217

1-800-441-2447 or +1-303-675-2140

Fax: +1-303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and
software implementers to use Freescale Semiconductor products. There are
no express or implied copyright licenses granted hereunder to design or
fabricate any integrated circuits or integrated circuits based on the
information in this document.

Freescale Semiconductor reserves the right to make changes without further
notice to any products herein. Freescale Semiconductor makes no warranty,
representation or guarantee regarding the suitability of its products for any
particular purpose, nor does Freescale Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or
incidental damages. “Typical” parameters that may be provided in Freescale
Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer
application by customer’s technical experts. Freescale Semiconductor does
not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized
for use as components in systems intended for surgical implant into the bodly,
or other applications intended to support or sustain life, or for any other
application in which the failure of the Freescale Semiconductor product could
create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended
or unauthorized application, Buyer shall indemnify and hold Freescale
Semiconductor and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized
use, even if such claim alleges that Freescale Semiconductor was negligent
regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale
Semiconductor, Inc. The ARM POWERED logo is a registered trademark of
ARM Limited. ARM7TDMI-S is a trademark of ARM Limited.

Java and all other Java-based marks are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

The PowerPC name is a trademark of IBM Corp. and is used under license.The
described product contains a PowerPC processor core. The PowerPC name is
a trademark of IBM Corp. and used under license. The described product is a
PowerPC microprocessor. The PowerPC name is a trademark of IBM Corp.
and is used under license. The described product is a PowerPC
microprocessor core. The PowerPC name is a trademark of IBM Corp. and is
used under license. All other product or service names are the property of their
respective owners.

© Freescale Semiconductor, Inc. 2008. All rights reserved.

MCF5475RM
Rev. 5
4/2009

Overview

Signal Descriptions

ColdFire Core

Enhanced Multiply-Accumulate Unit (EMAC)
Memory Management Unit (MMU)
Floating-Point Unit (FPU)

Local Memory

Debug Support

System Integration Unit (SIU)

Internal Clocks and Bus Architecture
General Purpose Timers (GPT)

Slice Timers (SLT)

Interrupt Controller (INTC)

Edge Port Module (EPORT)

General Purpose 1/0 (GPIO)

System SRAM

FlexBus

SDRAM Controller (SDRAMC)

PCI Bus Controller (PCI)

PCI Bus Arbiter (PCIARB)

Integrated Secuity Engine (SEC)
IEEE 1149.1 Test Access Port (JTAG)
Multichannel DMA (MCD)

Comm Bus FIFO Interface

Comm Timer Module (CTM)
Programmable Serial Controller (PSC)
DMA Serial Peripheral Interface (DSPI)
1°C interface

USB 2.0 Device Controller

Fast Ethernet Controller (FEC)
Mechanical Data

Register Memory Map Quick Reference
Index

o =
™ [=)

i~~~
oghgoogN

QWENENENENENENENVENENNENVE— -
@] [le] [ee] ENI [op] [63] ExN [o8] W) [[@] [{e] [ee] NI

w |

IND

-
P N

e
N [=)

Y =Y [
&1 BN [[N

WENENENENENENOENENOENNERNVE— IR
(@] [(o] [ee] BN| [op] [62] EXN [é%] NI] | [@] [(o] [ee] BN

w =

IND

Overview

Signal Descriptions

ColdFire Core

Enhanced Multiply-Accumulate Unit (EMAC)
Memory Management Unit (MMU)
Floating-Point Unit (FPU)

Local Memory

Debug Support

System Integration Unit (SIU)

Internal Clocks and Bus Architecture
General Purpose Timers (GPT)

Slice Timers (SLT)

Interrupt Controller (INTC)

Edge Port Module (EPORT)

General Purpose 1/0 (GPIO)

System SRAM

FlexBus

SDRAM Controller (SDRAMC)

PCI Bus Controller (PCI)

PCI Bus Arbiter (PCIARB)

Integrated Secuity Engine (SEC)
IEEE 1149.1 Test Access Port (JTAG)
Multichannel DMA (MCD)

Comm Bus FIFO Interface

Comm Timer Module (CTM)
Programmable Serial Controller (PSC)
DMA Serial Peripheral Interface (DSPI)
1°C interface

USB 2.0 Device Controller

Fast Ethernet Controller (FEC)
Mechanical Data

Register Memory Map Quick Reference
Index

Chapter 1

Overview
1.1 MCF547X FAMIlY OVEIVIEBW ...ouiiiiiiiiieieieite ittt bbbttt et 1-1
1.2 MCF547X BIOCK DIAQIAM ...cveiiieeieiiieiie ettt ettt e e baeteaneesne et e sraenreenee s 1-2
1.3 MCF547X FamMily PrOUQUCESccoeiiiieiiiiie ettt 1-3
1.4 MCFS547X FAMilY FEAIUIESoiuiiiiiiiiieieeee ettt 1-3
141 ColdFire VA COre OVEIVIEWcoeieieieiieiiesiesie st ee ettt sttt nee e 1-5
1.4.2 Debug Module (BDIM)ccoiiiiiiiiiieie ettt sttt 1-6
T e T I I USSR 1-6
1.4.4 ON-ChiP MEIMOIIES ...cveiiiiiiiiiieite ettt ettt et s et e e s te et e s se e s teeteaneesraeneenreas 1-7
1.45 PLL and Chip ClocKing OPLIONScoiiiiiiiiiiiie et s 1-7
146 Communications [/O SUDSYSIEMcoiiiiiiiiieieiee e 1-8
1.47 DDR SDRAM Memory CONrollerc.cccvoiiiieiiiie e 1-10
1.4.8 Peripheral Component Interconnect (PCI)cccoiiiieiiiiiii e 1-10
1.4.9 Flexible Local BUS (FIEXBUS)ccoiiiiiiiiieieiie st 1-10
1.4.10 Security Encryption Controller (SEC)cooiiiieiieie e 1-11
1.4.11 System Integration UNit (SIU)c.ooiieiiiiiieeeee e 1-11
Chapter 2
Signal Descriptions
20 A 1 0o 1 o{ £ o o SRR PRPSPTRN 2-1
20 St R =1 [o ot B T F-To =V RSSO 2-1
2.2 MCF547X EXIErnal SIGNAISocviiiiiiiieee ettt 2-16
2.2.1 FIEXBUS SIGNAIS ...oeiiiiiiiiieeee e 2-16
2.2.2 SDRAM Controller SIgNAIScceiveiieiieiiese et 2-18
2.2.3 PCI CONrOHEr SIGNAISooveiiieiice et 2-19
2.2.4 Interrupt Control SIGNalSccooiiiiiiii e 2-21
2.25 Clock and ReSEt SIgNAIScceeiuiiiiiieiieeie sttt 2-21
2.2.6 ReSet ConfIguIation PINScooiiiiiieiiiiesie sttt 2-22
2.2.7 Ethernet Module SIgNalS ... 2-24
2.2.8 Universal Serial BUS (USB)cc.cocoiiiiiieieiieie ettt se e 2-26
2.2.9 DMA Serial Peripheral Interface (DSPI) SIignalsccccoovviiiiniiiiniin e 2-26
2200 1PC 1O SIGNAIS ..oooveeeeoeeeeee e 2-27
2.2.11 PSC MOAUIE SIGNAIS ...ccviiiieieee et 2-27
2.2.12 DMA Controller Module SIgnalS ..ot 2-28
2.2.13 Timer Module SIgnalS ..ot 2-28
2.2.14 Debug SUPPOIt SIgNAISc..oiieiieiicii e 2-29
2.2.15 TESESIGNAIS ..ottt nee s 2-30
2.2.16 Power and ReferenCe PiNS ..ot 2-30

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor Y,

3.1
3.2

3.3

3.4

3.5
3.6

3.7

3.8

3.9

4.1

4.2

4.3

Chapter 3
ColdFire Core

COTE OVEIVIBW ...ttt bbbkttt bbb bbb e bt e s et e bbb e et bt e reans 3-1
FRALUIES ...ttt ettt e b bt e e bt e e b et e e et e e e e e R b e e ek b e e nn e e e b e e nreea 3-1
3.2.1 ENhANCed PIPEIINESooiiiieieee ettt e e e 3-2
3.2.2 Debug Module ENhANCEMENLScceciuiiieiiiiieiie e 3-6
Programming IMOTEIooviiiiiiiii e 3-7
3.3.1 User Programming MOGElocoiiioiiiieceee e 3-9
3.3.2 USEr StaCK POINTET (A7) oiiieeieiie ittt ettt te et sra e nneas 3-9
3.3.3 EMAC Programming MOel ... 3-10
3.3.4 FPU Programming MOGEIccooiiiiiiieeiiese st 3-10
3.3.5 Supervisor Programming MOodelcccooieiiiiiiiicec e 3-11
3.3.6 Programming Model Table ... 3-13
Data FOrmMAat SUMMAIYooiiiiiiiie ittt ettt et e e bt e e nbb e e s be e e enneeas 3-15
3.4.1 Data Organization iN REJISEIScccuciiiiiiieeii e s esie et sre e e sre e e nee s 3-15
3.4.2 EMAC Data RepPreSentationc.cooceiiiiiieiiiieiesie st 3-17
AdAressing MOde SUMMEATYcoviiiiiiiieie e se e re e e reesaesseesreeseesreenseaneeas 3-18
INSErUCTION SEE SUMMAIY ...c.iiiieiic ettt e e te e e ase e raeneeenee s 3-19
3.6.1 Additions to the Instruction Set ArChiteCtureccocvevviiieieiie s 3-19
3.6.2 INStrUCTION SEt SUMMAIY ...oviiiieiicie ettt sreenreaneens 3-22
INStruction EXECULION THMING ...oovviiieiieiie ettt sre e e be e e snaeseeenne s 3-27
3.7.1 MOVE Instruction EXeCUtion TIMINGccccoiiiimiiiiiiiieie e 3-28
3.7.2 One-Operand Instruction EXeCUtion TIMINGccoovveveeiiiiieeiesie e see e esee e sieaeens 3-30
3.7.3 Two-Operand Instruction EXeCUtion TiMINGccccccovveiieiieiieeiecie e 3-31
3.7.4 Miscellaneous Instruction EXeCUtion TIMINGcccooererireniininieeieiese e 3-32
3.7.5 Branch Instruction EXeCUution TIMINGcccccooeiiieriiiieiieie e eee e sse e 3-33
3.7.6 EMAC Instruction EXECULION TIMEScceiiiirieieieieieie st 3-34
3.7.7 FPU Instruction EXECULION TIMEScoiiiieiieiieie e e e sie e stee e sae e sneeneeas 3-35
EXCeption ProCeSSING OVEIVIEWcoueiiiiieeieiieiieieseesteeteseestesseestaessessaesseesessseesseensessesssesneens 3-36
3.8.1 Exception Stack Frame Definitionccooveiiiiiiiiiiccc e 3-38
3.8.2 ProCesSOr EXCEPLIONSccuviieiiiiieiiesii sttt bbb 3-39
PIECISE FAUITS ... bbbttt bbbt 3-42
Chapter 4
Enhanced Multiply-Accumulate Unit (EMAC)

Ty goTo (8 Tox 1 o] o ISR 4-1
411 MAGC OVEIVIEW eeeiiieiieie ettt stee e stestee e sae e esbeeseesseesteeseesreenbeenseaseesseaneesneenseeneenns 4-2
A =T o T= T LI @ 0T - U1 o] SRR 4-2

Memory Map/Register Definitionc.cccooiiiiiiiiic e 4-5
4.2.1 MAC Status RegiSter (MACSR) ..ot 4-5
4.2.2 Mask RegIStEr (IMASK)ccuiiiiieiiee sttt ettt ste e e nesnaenseaneens 4-10

EMAC INSLruCtion SEt SUMIMAIYccoueiiiiieieiie ettt sttt ste e b e sbesnee s 4-11
4.3.1 EMAC Instruction EXECUtiON TIMINGcccooivieeiieiiiiieniesie e 4-11
4.3.2 Data REPIreSENTALIONc..cveiieiiiiieie ettt e et e te e sraesneereesreeneeas 4-12
4.3.3 EMAC OPCOUES ...oeoeiiiiiiiieiiieie sttt sttt sttt st re e be b b e sbe et e sbeesbesneesbeeneeas 4-13

MCF547x Reference Manual, Rev. 5

vi

Freescale Semiconductor

5.1
5.2

5.3
5.4

5.5

5.6

5.7

6.1

6.2

6.3

6.4

6.5

6.6

Chapter 5
Memory Management Unit (MMU)

oL (1] (T T TR T PP PR PR PPPOPRRPRN 5-1
Virtual Memory Management ArChITECIUIEccoiiiiieiiiie e 5-1
521 MMU ArChiteCtUIe FEAIUIESocviiiiiiiieieiicieieie et 5-1
522 MMU ArChiteCture LOCAIIONccueiviiiiiiiiiiiiiisiieieee et 5-2
5.2.3 MMU Architecture Implementationccoceeiiiiniiiiis e 5-3
Debugging in a Virtual ENVIFONMENTccviiiiiei e ee e 5-7
Virtual Memory Architecture ProCeSSOr SUPPOITccvveveiieeiieeieieerieeee e eie e sva e e snaenne 5-7
541 PrECISE FAUILS ...ooeviiiie ettt e reeteene e ne et e neenas 5-7
5.4.2 Supervisor/USer StaCK POINTEIScccciveiiiiieiieieeie s et ee e sie e sae e sre e nnees 5-7
5.4.3 Access Error Stack Frame AddIitiONScooeieriiiniiiii s 5-8
MIMU DEFINITION ittt ee et e st e te et e s e saeeseeareenteeneesneeneenreees 5-9
55.1 Effective Address Attribute Determinationcccooeviiiiiniinieee e 5-9
55.2 MMU FUNCLONAILY ...cvocviiiiiiieeie ettt sre e 5-10
553 MMU OrganiZatiONcccoueiieiieiieiieiiesiesiesie sttt 5-10
554 MMU TLB ..ottt bbb 5-18
555 MMU OPEIALIONcciviiiiiiiiiiecie st sie ettt sttt et sbeeste et e s reeeesseeareens 5-19
MMU TMPIEMENTALION ...ttt bbbttt 5-20
5.6.1 TLB AAUIeSS FIEIASc.coiiiiiiiieiiiitesse e 5-20
5.6.2 TLB Replacement AlQOrithmc.cccvoiiiiiiiicce e 5-21
5.6.3 TLB LOCKEA ENTIESooiieiiiiiieiiieie ettt st ee e ste e sneenneanee s 5-22
MIMU INSEFUCTIONS ..ttt bbbttt et e bbb bbb b s 5-23
Chapter 6
Floating-Point Unit (FPU)
Ty goTo [8Tox 1o o I ST 6-1
T S @Y= Y - S PRSR 6-1
Operand Data FOrmats and TYPES ...cvveveiieiieiesiesieerieseesteeeesseesteeseesraesseaseesseesseessesreesseassesseessens 6-3
6.2.1 Signed-Integer Data FOMALScociiiiiiiiieiicie e 6-3
6.2.2 Floating-Point Data FOIMALScccociiiiiiiiiiiiiiee e 6-3
6.2.3 Floating-PoiNt DAta TYPES ...ccveiveeieiieeiesiie st eiesee e esee e te e e sae e sreeeesreesreeneesnaeeas 6-4
REQIStEr DEFINITION .oviiiiiicce et e e e te e e re e e e saeenas 6-7
6.3.1 Floating-Point Data Registers (FPO—FP7) ..., 6-7
6.3.2 Floating-Point Control RegiSter (FPCR)cooeiiie e 6-7
6.3.3 Floating-Point Status RegiSter (FPSR)ccccciiiiiiiiiece e 6-9
6.3.4 Floating-Point Instruction Address Register (FPIAR)ccoovviiiiiiiiieieccce 6-10
Floating-Point Computational ACCUIACYcc.eiveiierieiieieeieseesieeeesteesresee e eaesae e eeesreesseeneens 6-11
6.4.1 INtermediate RESUILcooiiiie et 6-11
6.4.2 RoUNING the RESUIL ..o 6-12
FI0ating-POINt POSt-PrOCESSINGveitveieiiieiieeieieesieeieseesieeeeseestesseesteeeessaesseaseesseesseaneesseesseaneens 6-14
6.5.1 Underflow, Round, and OVErflowWccociiiiiiiiiin e 6-14
6.5.2 CONAItIONAl TESTING ..eovieiiiiiieieite bbb 6-15
FI0AtiNG-POINT EXCEPLIONSvveiiiiieiieeieeiese ettt ste et e este e esnaessaeneenneenneaneens 6-17
6.6.1 Floating-Point ArithmetiC EXCEPLIONSccoveiuiiiiiieiiciie e 6-18

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor Vii

6.6.2 Floating-Point State FrameScccciveiiiiiieiieic et 6-23

T 14511 g0 Tox (o] 1TSS 6-25
6.7.1 Floating-Point INStrUCtION OVEIVIEWcc.ccieiiiiieiierie e e see e ie e sre e 6-25
6.7.2 Floating-Point Instruction EXecution TIMINGcccccccevivevieiieie e 6-27
6.7.3 Key Differences between ColdFire and M68000 FPU Programming Models 6-28
Chapter 7
Local Memory
7.1 Interactions between Local Memory MOGUIEScovoieiieiiiiieiiec e 7-1
7.2 SRAIM OVEIVIEWviiiiiiiiieiieiieie sttt sttt sttt ese et bbbt b s b be e b e e be e st e s e sb et e nbesbesbesbeabeabesreareas 7-1
7.3 SRAM OPEIALION ...ttt bbbt bbbttt e st et et e b et e s b e nbe b e be b sbenneas 7-2
7.4 SRAM Register DefINITIONcccvoiiiiiiice ettt e e sre e e sre e e 7-2
7.4.1 SRAM Base Address Registers (RAMBARO/RAMBARL)ccocevveiieiieiecieieeein 7-2
7.5 SRAM INIAIZATION ..oveiiiiiiiieicee et e st e te et esneesbeaseesreesteeneesneeneeas 7-4
751 SRAM INItIalization COUEcceiuiiiiiiieieiieese e 7-5
7.6 POWET MANAGEIMENToiiiiiiie ittt sttt e et e et e e st e e as e e nrb e e e ebb e e e b b e e enbeeennbeeaneeennnes 7-6
A O Tod g T @Y= VUSSR PRPRSPRN 7-6
7.8 CaChe OrganizZatiOnccciiiieiieieiie et se e se et e este e teeseesbeeseeaneessaeseesreesreeneesreeneeas 7-7
7.8.1 Cache Line States: Invalid, Valid-Unmodified, and Valid-Modifiedc..ccccoevnnne 7-8
7.8.2 The Cache at STAM-UPDccooiiiiiiiiiiiieeeee e 7-8
AR I O Uod o TN @ o 1=1 - £ [] o SRS 7-10
7.9.1 CaChiNg IMOUESocveeivieiece ettt et e re et e s e e naeenaesraeeeas 7-12
7.9.2 CaCNE PrOTOCOI ...ttt et reesne et s 7-14
7.9.3 Cache Coherency (Data Cache Only)cccccvoeiiiiiic e 7-15
7.9.4 Memory Accesses for Cache MaintenanCeccevveeeieeieiiie s 7-15
7.9.5 CACNE LOCKING ...ttt bbbt 7-17
7.10 Cache RegiSter DEfINITIONccccoiiveiieiieieeie sttt e e e ste e neenee e 7-19
7.10.1 Cache Control RegiSter (CACR)ccvcviiieieciese et 7-19
7.10.2 Access Control Registers (ACRO—ACR3)ooiiiiiiieie e 7-22
0 R O Tod o T |V =T T o =T 0 1=) SR 7-23
7.12 Cache Operation SUMIMAIYc.coviiieiierieiieieesieseesteeseesteesreetessaesteaseessaesteessestaeteaneesreeneesneenns 7-26
7.12.1 Instruction Cache State TranSItIONScccccvereiiieiiereiieseese e se e e eseesreesreeeeas 7-26
7.12.2 Data Cache State TranSItioNScooceiiriiieiieieienie e e 7-27
7.13 Cache INItIAliZatioN COUEccvoiieiiiiiiecie ettt 7-30
Chapter 8
Debug Support
S F0 A 101 0o 1 o{ £ T o SO SRPRPRSPRN 8-1
8L L OVEIVIBW etttk b e bbbtk b et e sttt eb et ne et 8-1
8.2 SIgNAl DESCIIPLIONS ...oviiiiiiiitieite ettt te et e e s te e e e be e te e st e sae e teeseesteesseeneesreeneeas 8-2
8.2.1 Processor Status/Debug Data (PSTDDATA[7:0]) «oveoververeiieieieniesiesieeeseeeeee e 8-3
8.3 REaI-TIME TraCe SUPPOIT ..eiiieiiieie ettt e st e e et esseesteeneesreesseeneesneeeesseaneeas 8-5
8.3.1 Begin Execution of Taken Branch (PST = 0X5)ccccoeiiiiiiiiiiiie e 8-6
8.3.2 Processor Stopped or Breakpoint State Change (PST = OXE)cccoovvviiiiniiiiiiie 8-7
8.3.3 Processor Halted (PST = OXF)cooveiiiieiieie et 8-8

MCF547x Reference Manual, Rev. 5

viii Freescale Semiconductor

8.4 Memory Map/Register DEfINITIONcccvoiiiiiiice e
8.4.1 Revision A Shared Debug RESOUITEScccueiiiieiieiiiie e
8.4.2 Configuration/Status RegiSter (CSR)cccoveiieiieiiiie e
8.4.3 PC Breakpoint ASID Control Register (PBAC)cccvoeiieceieceere e
8.44 BDM Address Attribute Register (BAAR)oociiiiiiiiiee e
8.4.5 Address Attribute Trigger Registers (AATR, AATRL) ...ccooveiiieniiieiieci e
8.4.6 Trigger Definition RegiSter (TDR)ccvciiiieii e
8.4.7 Program Counter Breakpoint and Mask Registers (PBRn, PBMR)cc.cccccvvnee.
8.4.8 Address Breakpoint Registers (ABLR/ABLR1, ABHR/ABHR1)c.ccccceviviinnnnnn.
8.4.9 Data Breakpoint and Mask Registers (DBR/DBR1, DBMR/DBMR1)c.ceu....
8.4.10 PC Breakpoint ASID Register (PBASID)coooiiiiiiiiiiieseeeieeee e
8.4.11 Extended Trigger Definition Register (XTDR)cccocviiieiieereiieseeie e e see e
8.5 Background Debug Mode (BDM)cooioiiiiiiieie ettt
ST R O o U I T | SRR UP PP
8.5.2 BDM Serial INErfaCecccoiiiiiiiiiiisieiee e
8.5.3 BDM COMMENGA SEL ..oviiviiiiiieiieiie ittt sttt
8.6 Real-Time Debug SUPPOITc.viiiieiiieeteee e bbbt
8.6.1 Theory Of OPErationccccciieiieiiieiieie e se et reeee e e nne e
8.6.2 Concurrent BDM and Processor OPErationcccccveveeieeiiesieseesieseesneseeseesseanens
8.7 Debug C Definition of PSTDDATA OUIPULSoouieieieieiesiesiesie st
8.7.1 USEI INSIIUCLION SET ...oveiuiiiiiieieite ittt bbb
8.7.2 SUPErVISOr INSTFUCTION SEL ...c.veciiiieiice e e
8.8 COldFire DEDUQG HISIOMY ..ottt
8.8.1 ColdFire Debug Classic: The Original Definitionccccccevviieiiienncie e
8.8.2 ColdFire Debug REVISION Bccociieiiiieiiesie ettt
8.8.3 ColdFire Debug ReVISION Ccccooiiiiiiiiieieiee et
8.9 Freescale-Recommended BDIM PINOULcccciiiiiiiiiiieiese e e
Chapter 9
System Integration Unit (SIU)
TR A 101 (0o 1t oo PRSP
T T | (1] (1S TSRS P RPN
9.3 Memory Map/Register DEFINITIONcccveiiiiieiiee e ene e
9.3.1 Module Base Address Register (MBAR)cccooiiiiiiiiiiciiese s
Chapter 10
Internal Clocks and Bus Architecture
000 T {1 T [T) o S TRR
000 R =1 0T S I = To = o OSSR
10.1.2 ClIOCKING OVEIVIEWooouiiiiieiieeieciiesie ettt st sta et te e e neestaennesraenneanes
10.1.3 INternal BUS OVEIVIBWc..oiiiiiieieiiiesie ettt sneenneenee e
10.1.4 XL BUS FEATUIESc.ieiiiieiiieeiee et
10.1.5 Internal Bus Transaction SUMMAIIEScccoeiuereerieiirniieie e
10.1.6 XL Bus INterface OPEratioNScccoerereiiriiriiniesisiesieie et
10,2 PLL ottt bR b E bR R R Rt R et b bbb b bbb

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor

10.2.1 PLL Memory Map/Register DeSCIPIONScceveeiueiieiieie e ese e 10-5

10.2.2 System PLL Control RegiSter (SPCR)ccviiiiiiiiiieieee e 10-5
10.3 XL BUS AIDITET ..ot b ettt b bbb 10-6
L0.3. 1 FRALUIES ...tttk ettt e et e e et e et e s me e e mb e e nbeesnn e e nbeeanneanneen 10-6
10.3.2 Arbiter FUnctional DeSCIIPIIONcceeiiiiiiieiecie e e 10-6
10.3.3 XLB Arbiter Register DeSCHPLIONSccueiverieiiiiieiesiese e see e se e 10-8

Chapter 11

General Purpose Timers (GPT)

I R 10 o [1 o o TSP SRRSO P RSP 11-1
O O R O V=T VUSSP 11-1
I |V [T (=TS0 B @ o 1=T - £ o] o SRS 11-1
11.2 EXEEINAl SIGNAIS .. oeoiiieiiieieee ettt et et et e e et a et e e e nreereas 11-2
11.3 Memory Map/Register DefiNItION ..o 11-2
11.3.1 GPT Enable and Mode Select Register (GMSN)ccccoeiieiiiiieiicicseee e 11-3
11.3.2 GPT Counter Input Register (GCIRN)cccvoiiiice e 11-5
11.3.3 GPT PWM Configuration Register (GPWMN)cccooviiiiiiiiieeene s 11-6
11.3.4 GPT Status RegiSter (GSRN)cciiiiiieiieie et enes 11-7
11.4 FUNCLiON@l DESCIIPLIONvoiiieiciieeie ettt et e et e e seesreesaesnaenreaneas 11-8
11.4.1 Timer Configuration Methodcoooiiiiiiiiiiii e 11-8
11.4.2 Programming NOTEScceciuiiieiieieiiese e e et eesie e e sae e e eaessaesreeaesreesreenee e 11-8

Chapter 12

Slice Timers (SLT)

02 R 101 o [1 o o ISP 12-1
00 R @ V=T VUSSR 12-1
12.2 Memory Map/Register DEFINITIONc.ccoviieiiiiiiiece e 12-1
12.2.1 SLT Terminal Count Register (STCNTRN) ..c.ocoeiiiiiiiecece e 12-2
12.2.2 SLT Control RegiSter (SCRIN)oiiiiiieieiee et 12-2
12.2.3 SLT Timer Count RegiSter (SCNTN)civeiiiieieeie e 12-3
12.2.4 SLT Status RegiSter (SSRN)ccuvciiiiiiiiic sttt 12-4

Chapter 13

Interrupt Controller

IR T80 I {010 [1) o SR 13-1
13.1.1 68K/ColdFire Interrupt ArchiteCture OVEIVIEWcccevivevieiiinieeiiesiese e see e 13-1
13.2 Memory Map/RegiSter DESCIIPLIONSccviviiieiiiiecie et e et sreenas 13-4
13.2.1 ReQISter DESCIIPLIONSc.veviiiitiitisiieiieieee ettt bbbt 13-6

Chapter 14

Edge Port Module (EPORT)
o R 101 0 L1 o o ISP PSPPSR 14-1
14.2 Interrupt/General-Purpose 1/O Pin DESCIPLIONSccviiiiiriieieiieiesie e 14-1
14.3 Memory Map/Register DefiNItION ... 14-2
14.3. 1 MEMOIY AP .ottt ettt et e e st e e snb e e nnb e e e nnreeens 14-2
MCF547x Reference Manual, Rev. 5

X Freescale Semiconductor

15.1

15.2
153

154

16.1

16.2

16.3

171

17.2
17.3
17.4

14.3.2 ReQiSter DESCIIPLIONSecviiiieiieiesteeite et te e sre e reesre e e 14-2

Chapter 15
GPIO

T oo ¥ od A T] o ISR 15-1
1511 OVEIVIEBW otiiiiiiiiieiieie ettt b bbb bbbttt ettt bbbt 15-2
15.1.2 FBALUIES ..ottt ettt ettt bt et e s bt e e b e et e e e nn e e nbe e nreanne e 15-3
EXternal Pin DESCIIPLIONoiiiiiiieieieie ettt bbbt 15-3
Memory Map/Register DefinItioNcccciveiiiiiiiec e 15-7
15.3.1 REQISIEI OVEIVIEW ...oviiiiiieiiie ittt st te e te e beanaesteenenne e 15-7
15.3.2 REQIStEr DESCIIPLIONScuviiiiitiiiisiieiieit ettt bbb 15-8
FUNCLIONAL DESCIIPLION ...ecvviiieiieie ettt e st e e sr e et e nneenneenee e 15-31
1541 OVEIVIEBW .oiiuiiiiiiieiieiieie sttt sttt bbbkt b b e bt e st e et e bt e b e st e nbeebeeneeneas 15-31

Chapter 16

32-Kbyte System SRAM

T 0o U o1 T o SR 16-1
G700 I R =1 0T S I = To | =T o SR 16-1
16.1.2 FALUIES ..ottt ettt b e et e s Rt e e et e e enn e e beeanneanneen 16-2
16.1.3 OVEIVIEW ooeviiiiiiieeiie sttt sttt st et see st et st e beete e s e s be et eere e e teenteaneesseeneeaneeneeenee e 16-2
Memory Map/Register DefinItiONccooiveiiiieiiee e 16-2
16.2.1 System SRAM Configuration Register (SSCR)ccccveiiiiiiiieiieie e 16-3
16.2.2 Transfer Count Configuration Register (TCCR)ccocviiiiiiiieieerenece e 16-4
16.2.3 Transfer Count Configuration Register—DMA Read Channel (TCCRDR) 16-5
16.2.4 Transfer Count Configuration Register—DMA Write Channel (TCCRDW) 16-6
16.2.5 Transfer Count Configuration Register—SEC (TCCRSEC)ccccooviiviiiviiienenn 16-7
FUNCLIONAL DESCIIPLION ...eviiiieie ettt st et et se e ae e esraenteaneenneeneens 16-8

Chapter 17

FlexBus

T goTo (3 Tox 1o o TSP T PR 17-1
0 T R @ V=T VUSSR 17-1
L17.0.2 FRALUIES ...ttt et sme e e b e s e e nne e s nnennne e 17-1
17.1.3 MOdeS OF OPEIALIONc.cccviiiieiiciiseece e re e 17-1
BYEE LANES ..o 17-2
AAUIESS LALCN ...t bbbttt bbb 17-2
EXIEINGAL SIGNAIS ...t nre e 17-3
17.4.1 Chip-Select (FBCS[5:0]) .iververterririeriiniieieieie ettt 17-4
17.4.2 Address/Data Bus (AD[31:0]) cueoieeiierieiieieeie et see e eie e 17-4
17.4.3 Address Latch Enable (ALE)coooviieiiie e 17-4
17.4.4 REAU/IIE (RIW) ...ocvoeeeeeceeeeeee ettt 17-4
17.4.5 Transter BUISE (TBST) .ouioiiiieiicie ettt saeanae e nne e e 17-4
17.4.6 Transfer Size (TSIZL:0]) oo e 17-4
17.4.7 Byte Selects (BE/BWE[3:0]) ...ccvvvuvereeieeieeeiesesssssesiossesssssssssssssssssssssssesssssnsens 17-5
17.4.8 OULPUL ENADIE (OE)oveieieeeeeeeeeeee ettt sn st en st an s 17-5

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor xi

17.4.9 Transfer ACKNOWIEAGE (TA) w..cvoveeeeeieeeeeeeeeeeeeeee e,
17.5 Chip-Select OPErationcccooeieeieiieiieie e
17.5.1 General Chip-Select Operationcccccevivervsiesveresiesnennens
17.5.2 Chip-Select REQISLEISccveveiieieiieie e
17.6 Functional DeSCIIPLIONcooiviiiiiieiesieieeee e e
17.6.1 Data Transfer Operationccccveverireriesiesiere e e e seennens
17.6.2 Data Byte Alignment and Physical Connections
17.6.3 Address/Data Bus MUltiplexingcccooeiiiiniiiniieniiin
17.6.4 BuUS Cycle EXECULION ...ocvveieciieiieee e
17.6.5 FlexBus Timing EXamplesc.ccccooeiieiiiiiiicic e
17.6.6 BUISE CYCIES ..o
17.6.7 Misaligned OPerandsccceeivererieerieeresieseeseeseese e seeneens
17.6.8 BUSEITOIS ...oooiiiiieeee e

Chapter 18
SDRAM Controller (SDRAMC)

S T80 O [1 T (1 1 o) o USSR
18.2 OVEIVIEBW ..ottt bbbttt
18.2. 1 FRALUIES ...eeeieeieeeieeeiee ettt
18.2.2 TerminolOgyccooeeiiiiiiiiiere s
18.2.3 BIOCK DIaQramcccceeiiieieiie e seese e se e
18.3 External Signal DesCriptionccccoeiieiiiiie i
18.3.1 SDRAM Data Bus (SDDATA[3L:0]) .ccevevvereriereievieciesieevenes
18.3.2 SDRAM Address Bus (SDADDR[12:0]) .ccccovvvreiirieniinieninne
18.3.3 SDRAM Bank Addresses (SDBA[L:0]) .ccccocevvevievieieciciiennns
18.3.4 SDRAM Row Address Strobe (RAS)cccevvvveeerecreeereeeenenn.
18.3.5 SDRAM Column Address Strobe (CAS)ccccevvvvvvvvveenennee.
18.3.6 SDRAM Chip Selects (SDCS[3:0]) vevvevvrrrrirrieienineniesesennes
18.3.7 SDRAM Write Data Byte Mask (SDDM[3:0])c.ccovvvvvrivnnnnnee
18.3.8 SDRAM Data Strobe (SDDQS[3:0]) .ooevevvreieieiinieriesiesenn
18.3.9 SDRAM Clock (SDCLKJZL:0]) weoveeririnieinienieniesie e
18.3.10 Inverted SDRAM Clock (SDCLK[L:0]) .eeoeeverververirieniiniinienn
18.3.11 SDRAM Write Enable (SDWE)ccccoviviiiiieienc e
18.3.12 SDRAM Clock Enable (SDCKE)cccoovrvvniiiiiiieniseene
18.3.13 SDR SDRAM Data Strobe (SDRDQS)cccccevvrvnirieninieninnn
18.3.14 SDRAM Memory Supply (SDVDD)cccccceviveveiieieeieiiennns
18.3.15 SDRAM Reference Voltage (VREF) ..o,
18.4 Interface ReCOMMENAtIONScccveieiieriiiie e
18.4.1 Supported Memory Configurationscccecveveriveresiiesieennens
18.4.2 SDRAM SDR CONNECLIONSoovviviirieieieiieiie e
18.4.3 SDRAM DDR Component CONNECIONScccocvrveriervnieninnn
18.4.4 SDRAM DDR DIMM CONNECLIONScovvvivieieiieiieriesiiniesienns
18.45 DDR SDRAM Layout Considerationsccccceeveereneesennnns
18.5 SDRAM OVEIVIBW ...ocuviiiiiiiierieiiiesieeiesiee e eee st seeaneesreesseaneesseeee e
18.5.1 SDRAM COMMANGSooveviriiriiiiiniesiieesieee e

MCF547x Reference Manual, Rev. 5

il

Freescale Semiconductor

18.5.2 Power-Up INItIaliZationcccooiiiiiieiic e 18-13
18.6 FUNCHIONAI OVEIVIBW ...ttt bttt et st et r et e e neesne et 18-15
18.6.1 Page ManagEmMENTcuiiiiiieiiiie ittt 18-15
18.6.2 TrANSTEN SIZE .viieiieieieie ettt bt nre s 18-15
18.7 Memory Map/Register DefiNItIONc.ociiiiiiiiiiie e 18-16
18.7.1 SDRAM Dirive Strength Register (SDRAMDS)ccccocevveiiiiieieeieseese e 18-16
18.7.2 SDRAM Chip Select Configuration Registers (CSNCFG)c.ccccvvveveiveieiiecieenn. 18-17
18.7.3 SDRAM Mode/Extended Mode Register (SDMR)cccooviiiiiieieiiienc e 18-18
18.7.4 SDRAM Control Register (SDCR) ...cc.ecieiieieiieseeieseesie e 18-19
18.7.5 SDRAM Configuration Register 1 (SDCFGL)cccccovivieiieriiiie e 18-21
18.7.6 SDRAM Configuration Register 2 (SDCFG2)cccviriiiiinieieieie e 18-23
18.8 SDRAM EXAMPIE ..ottt bbbt 18-24
18.8.1 SDRAM Signal Drive Strength SEttingsccccccveieiiieii i 18-24
18.8.2 SDRAM Chip SeleCt SELHINGSooviiiiiieiiiiiesiiseses e 18-25
18.8.3 SDRAM Configuration 1 Register SEttingsccccevvereiieerierie e 18-26
18.8.4 SDRAM Configuration 2 Register SEttingscccceovvevieiiere e 18-27
18.8.5 SDRAM Control Register Settings and PALL commandccccoceveienininnnnninns 18-27
18.8.6 Set the Extended Mode REGISIENeccueiieiieicie e 18-28
18.8.7 Set the Mode Register and ReSet DLLcccccvevviiiiiieiiiicce e 18-29
18.8.8 Issu€ @ PALL COMMANGocvviiiiiieiiieieeie sttt nneas 18-30
18.8.9 Perform Two RefreSh CYCIESocvveiiveiecicceee e 18-31
18.8.10 Clear the Reset DLL Bit in the Mode RegISterccevviieiiieiiiie e 18-32
18.8.11 Enable Automatic Refresh and Lock Mode RegiSterccoovveieicieiiieniiinins 18-32
18.8.12 INItialization COUEccciiiiiiiiicieee e 18-33
Chapter 19
PCI Bus Controller
TS A 101 o (1o o ISP 19-1
19.1.1 BIOCK DIBGIAM ..ottt bbbt bbb 19-1
19,12 OVEIVIEBW .eiiiiiiiiieiieie ettt bbbt bt bbbttt bbbt bbb 19-1
19.1.3 FALUIES ...ttt ettt b e e e e s b e sb et e e e e e e be e e nreanne e 19-1
19.2 External Signal DESCIIPLIONcuiiiiiiiiieieite ittt 19-2
19.2.1 Address/Data Bus (PCIAD[31:0]) .iooveiieieiierieeiieseesie e e esee e e se e 19-2
19.2.2 Command/Byte Enables (PCICXBE[3:0]) ...coovoveiieieiieieeie e 19-2
19.2.3 Device SeleCt (PCIDEVSEL) ..ottt 19-3
19.2.4 Frame (PCIFRAME)ccooiiiiiiiiiiiee et 19-3
19.2.5 Initialization Device Select (PCIHIDSEL)ccccoveviiieii e 19-3
19.2.6 Initiator Ready (PCHRDY) ..ot 19-3
19.2.7 Parity (PCIPAR) .ottt bbbt 19-3
19.2.8 PCI CIOCK (CLKIN) oottt 19-3
19.2.9 Parity Error (PCIPERRY)ooiiiiiiiieeee s 19-3
19.2.10 RESEL (PCIRESET) ..oiuiiiiiiiieieste ettt bbbt 19-3
19.2.11 System Error (PCISERR) ...cuooiiiiiiiie et s 19-3
T A (o] o I (2O 1S O RS 19-3
19.2.13 Target Ready (PCITRDY) .iiiciiiiiiieii ettt 19-4

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor xiii

19.3

19.4

19.5

19.6

20.1

20.2

20.3

20.4

20.5
20.6

21.1

Memory Map/Register Definitionc.cccoiiiiiiicic e 19-4
19.3.1 PCI Type 0 Configuration REQISLENSciieiiiieriieiesie e 19-6
19.3.2 General Control/Status REGISIEIScccveviiiieiicie e 19-13
19.3.3 Communication Subsystem Interface ReQIStersccccvvevveiiiicie e 19-23

FUNCLIONAL DESCIIPLION ..ottt bbbt r e nbeene e 19-48
19.4.1 PCIBUS PrOTOCOI ...couviiiiiiiiie sttt 19-48
19.4.2 INItiator ArDITratiONoovoiiiiiiiiee e 19-55
19.4.3 Configuration INTEITACEcoiiiiiiiiiiieee e 19-56
19.4.4 XL BUs INItIAtOr INTEITACEoovviiieiieieieie e 19-56
19.45 XL Bus Target INTErfacecoociiiiiiiiiiccic et 19-63
19.4.6 Communication Subsystem Initiator INterfacec.ccooviiiiieiiieie s 19-66
19.4.7 PCI CIOCK SCREME ... 19-70
RS I T 11 =T (1]] T PSPPSRI 19-70

ApPlICation INFOIMALIONcviiiiiie et 19-70
19.5.1 XL Bus-Initiated Transaction Mappingccccceevvereiiieieeresieeseeieseesie e seesae s 19-70
19.5.2 AAreSS IMAPS ...cveeuiiiiieitieieeie ettt e et s te et e st st e et e er e te et e neenreeaenneens 19-71

XL BUS ATDITrAtION PIOTTLY ...c.voiiiiiiieieiieieiesee et 19-75

Chapter 20
PCI Bus Arbiter Module

INEFOAUCTION .ot b bbbt et bbb bbbt 20-1
P40 I R =1 (oot B T To] -V USSP SRRSO 20-1
20.1.2 OVEIVIEW ..ottt sttt ettt st e st e sbe e st e e teenteeseeebeenteeneesseeteeneesreeteaneeaneeeeas 20-1
20.1.3 FRALUIES ...eeeeeeeiieee ettt 20-2

External Signal DESCHIPLIONcviiiiiiiie et sre e sre e 20-2
20.2.1 Frame (PCIFRM) .ot 20-2
20.2.2 Initiator Ready (PCHRDY) .oiioiiiieiieie ettt sttt enne e 20-2
20.2.3 PCI CIOCK (CLKIN) ooitiiiiieie ittt sttt 20-2
20.2.4 External Bus Grant (PCIBG[4:1]) .oooireriiiiieieieiesie e 20-2
20.2.5 External Bus Grant/Request Output (PCIBGO/PCIREQOUT)ccovvveiviieiiecienenn, 20-3
20.2.6 External Bus Request (PCIBR[4:1]) .ioovoveiiieiiiie st 20-3
20.2.7 External Request/Grant Input (PCIBRO/PCIGNTIN)cccoooiiiiiniiiiiieieiesc e 20-3

REQISTEr DEFINITION ..oviiie et e st esae e e e sreenteeneesreeneeas 20-3
20.3.1 PCI Arbiter Control RegiSter (PACR)coieiiiiieiicie et 20-3
20.3.2 PCI Arbiter Status RegiSter (PASR)coviiiiiieieeie e 20-5

FUNCLIONAL DESCIIPLION ..eviiiieie ettt ettt s s e sae e esreenteaneesreeneeas 20-5
20.4.1 EXtErnal PCI REQUESESccviiiieieiie ettt ettt et ane e 20-5
F A0 N N 1 o111 - £ [0 o SRR S TOTRSRN 20-6
20.4.3 MaASEr TIME-OUL ..ueiuiiiiiiiieie et b bbb 20-9

] PP PP P PP PRPUPPOTRRTPN 20-10

INEEITUDTS et e et e e e e e 20-10

Chapter 21
Integrated Security Engine (SEC)
FRATUIES ..ot nne e 21-1

MCF547x Reference Manual, Rev. 5

Xiv

Freescale Semiconductor

21.2 ColdFire Security ArChItECIUIEcceiieiiiie et 21-1

P G I =] [oTod QB T - To | - o ISR 21-2
214 OVEIVIEBW ..ottt bbbt h bbb bbbt b £ b e bRt e st e e b e b e bbb bbbttt 21-2
21,41 BUS INEEITACE ...ttt ne s 21-2
21.4.2 SEC CoNroler UNItcoiiiiieiiie ettt 21-3
21.4.3 Crypto-Channelscoooiiiiiiieie ettt sre e 21-3
21.4.4 EXECUION UNIS (EUS) .ooviiiiiiieiie ettt sttt 21-4
21.5 Memory Map/Register DefiNITIONccoiiiiiiiiiiieeiee e 21-8
21.6 CONTIOMIET ..ottt bbbt b ettt enes 21-11
21.6.1 B ACCESS ...eieieieiieiiie ettt ettt b et e bRt et R et b e nn e ne e 21-11
21.6.2 Multiple EU ASSIGNMENToviiiiiiiiiiiiieieeeee s 21-11
21.6.3 MUItIpIE ChanNeISooiiiieice e 21-12
21.6.4 CONtroller REGISIEISocuviiiieiecie ettt 21-12
21.7 CRANNEIS ..o e ettt e R e te et e R e e e e ne e naeete e e teeneeareenteas 21-18
21.7.1 Crypto-Channel REQISIEISccviiieiieieiieie et 21-19
21.8 ARC Four Execution Unit (AFEU)cooiiiiii ettt 21-28
21.8.1 AFEU REQISIEr IMAP ...veiiiiiiiieieie ettt 21-28
21.8.2 AFEU Reset Control Register (AFRCR)ocoveivieiieceee e 21-28
21.8.3 AFEU Status RegiSter (AFSR)coovoiiiieiicie e 21-29
21.8.4 AFEU Interrupt Status RegiSter (AFISR)cooiiiiiiiieiiieieeeee s 21-31
21.8.5 AFEU Interrupt Mask Register (AFIMR)cccooviiiiiieieeieseece e 21-32
21.9 Data Encryption Standard Execution Units (DEU)ccccoviiiiiiiiiiiececcceee e 21-34
21.9.1 DEU REQISIEN IMAP ...eeiviiiiiiieieieite ettt 21-34
21.9.2 DEU Reset Control Register (DRCR)ccoviieiieieiieseeie e 21-34
21.9.3 DEU Status RegiSter (DSR)c.ciieiiiiieiieie sttt 21-35
21.9.4 DEU Interrupt Status Register (DISR)cooviiiiiiiiieic e 21-37
21.9.5 DEU Interrupt Mask Register (DIMR)cccooviiieiiieiiiie e 21-39
21.10 Message Digest Execution Unit (MDEU)cccoooiiieiiiic e 21-40
21.10.1 MDEU REGISIEN IMIAPeeuviieiiiieitisiesieeie ettt 21-40
21.10.2 MDEU Reset Control Register (MDRCR)c.cccveieiieiieieseere e 21-41
21.10.3 MDEU Status Register (MDSR)ccoviiiiieieciese e 21-41
21.10.4 MDEU Interrupt Status Register (MDISR)coooiiiiiiiiieiineeee e 21-43
21.10.5 MDEU Interrupt Mask Register (MDIMR)cccccoiiieiiiieciece e 21-44
21.11 RNG ExXecution Unit (RNG)cecoviiieiiiieciee ettt st saa e e e nneannen 21-46
21.11.1 RNG REGISIEN IMIAPD ..veiiiiiiiieieiiesie sttt bbbttt bbb 21-46
21.11.2 RNG Reset Control Register (RNGRCR)ccooviiiiieiicic e 21-46
21.11.3 RNG Status Register (RNGSR)coviieiieieiie s 21-47
21.11.4 RNG Interrupt Status Register (RNGISR)ccooeiiiiiiiiieiieee e 21-48
21.11.5 RNG Interrupt Mask Register (RNGIMR)ccccoviiiiiiiiieiiece e 21-49
21.12 Advanced Encryption Standard Execution Units (AESU)ccccceviiiiiiiiciecic e 21-50
21.12.1 AESU REGISIEN IMAPveivieiieieieite ettt 21-50
21.12.2 AESU Reset Control Register (AESRCR)c.cooveiveiieiieieee e 21-50
21.12.3 AESU Status Register (AESSR)c.oiiiiiiiiieieee et 21-51
21.12.4 AESU Interrupt Status Register (AESISR) ..o 21-53
21.12.5 AESU Interrupt Mask Register (AESIMR)cccooiiiiiiiieiiece e 21-54

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor XV

A0 B I LTS] (0 SO OSPRSTSSN 21-56

21.13.1 DESCIIPLON SIIUCTUIEveiveiieeiieiie ettt sttt st sneesbeeeenneees 21-56
21.13.2 DeSCriptor CRAINING ...vecveiieiieie et e e e e sae e e sreesreaneesneeneeeneenrs 21-61
21.13.3 Descriptor TYPe FOIMALSccoveiieiiiieieeie et 21-62
21.13.4 DESCIIPLON CIASSESoiueeiiiiiiiieeieiie sttt sttt ettt esbe e enes 21-64
21.14 EU Specific Data Packet DESCIIPLOISc.ciiieiiiiieieeieciesie e see e e s ste e e sre e e sneenneas 21-67
21.14.1 AFEU Mode Options and Data Packet DeSCIPtOrsccccovevvivieveeriesieseeie e 21-67
21.14.2 DEU Mode Options and Data Packet DeSCrpLOrsc.ccoceriririniniisiieieeiesienes 21-72
21.14.3 MDEU Mode Options and Data Packet DeSCriptorsccccccevvvererieesesiesieesieseeen 21-77
21.14.4 RNG Data Packet DESCIIPLOIScc.vcviiieiicie ittt 21-82
21.14.5 AESU Mode Options and Data Packet DeSCriptorsccccuvvveieienencienesenieens 21-83
21.14.6 Multi-Function Data Packet DeSCHIPIOISc.ccviieieereciecie e 21-90
Chapter 22
IEEE 1149.1 Test Access Port (JTAG)
P8 R 141 (0 To 1t o] o TP 22-1
22.1.1 BIOCK DIGQIAM ...ttt bbbt 22-1
22.1.2 FRALUIES .. .eeieeeiee ettt ettt R et 22-2
22.1.3 MOdES OF OPEIALIONcccviiiiiiiieiie ettt et e e reesreannesreenea s 22-2
22.2 External Signal DESCIIPLIONcooiiiiiiiiiiiiiiiie ittt 22-2
22.2.1 Detailed Signal DeSCIIPLIONccviieiieriieieciese et sae e snaenees 22-2
22.3 Memory Map/Register DEfINITIONcccoooiiiiiicc e 22-4
22.3. 1 IMEMOTY AP .otttk 22-4
22.3.2 ReQISter DESCIIPLIONScviiiieiieeiieie s et ee s e steeee s ste et e re e te e ssaesaeeneesraesneeneesreenneas 22-4
22.4 FUNCLIONAI DESCIIPLION ..c.viiiiiiiicieee ettt re et b et e et e s st e ste e e e e reesreenee e 22-6
2241 JTAG MOUIE ..ottt e s 22-6
22.4.2 TAP CONTIOIIET ettt 22-6
22.4.3 JTAG INSIFUCLIONS ...eviivieiiesieie ittt bbbttt bt sbe e e ne e 22-7
22.5 Initialization/Application INFOrMALIONccooiiiiiiiieie e 22-9
22.5.1 RESIIICTIONS ...viviiiitiitieiieie ettt bbbttt b bbbttt 22-9
22.5.2 Nonscan Chain OPEIatiONcccveiieiiiieieeie et re e e resneeane e, 22-9
Chapter 23
Multichannel DMA
pZ2C I R 1 0o 1 od £ o o TSR 23-1
pZ2C 0 R =1 (oot D T - To | -V SO PSSRSO 23-1
23.1.2 OVEIVIEBW ..ottt sttt bbb bbbt s et e et bbbt e neane e 23-2
23.1.3 FRALUIES ...ttt bttt ettt h e Rt bbbt e Rt et e nne e beereas 23-2
p A o q (=T £ IS [- LSS 23-3
23.2.1 DREQLIO] coooiiiiiieiteieiie ettt bbbt bbbt 23-3
23.2.2 DACKILO] coriiiiieiet ettt ettt nr e r e e e ne e 23-3
23.3 Memory Map/Register DEFINITIONSccciiiiiiieieiie e 23-3
23.3.1 DMA TaSK MEMOIY ...iiiiiiiiiiiieitieie sttt sttt sbe e sreenbeanee s 23-3
23.3.2 IMEMOIY STIUCKUIE ..ottt nne e 23-4
23.3.3 DIMA REUISIEIS ouviiuieiiieieeiiesee st eie st e te et e te e teastessaesteeseesbeeseeneessaesseaneesreenseanaesneensens 23-5

MCF547x Reference Manual, Rev. 5

XVi Freescale Semiconductor

23.3.4 External Request Module REJISLEISccecieiieiiceiiecie e 23-20

23.4 FUNCLIONAI DESCIIPION ..cutiitiiiiieiieiie sttt sttt ettt e bt et b et e eneesbeeneeas 23-22
2341 TASKS ettt b bbbt ns 23-22
A B L 1ot 0 (0] TSRS 23-23
23.4.3 Task INIAIIZALIONccuoiiiiiii e e 23-23
2344 INITIALOTS ..evvieiiee ettt bbbttt b bbbttt re s 23-23
23.4.5 PrIOMTIZAIION ..ocviiieiiiiiieieieee ettt bbb re s 23-24
23.4.6 CONEXE SWITCN .vviiieiice ettt sne e e eneenns 23-24
23.4.7 Datad MOVEMENT ..o 23-24
23.4.8 Data Manipulationccccciiiiiiicie e 23-24
23.4.9 LINE BUTTEIS ..ooeiiieie ettt st n e nne et e ene e e 23-26
23.4.10 Termination OF LOOPvccviieiieiecie ettt e e saeeneenns 23-27
A T R 1 =T € 10) TSP 23-27
23.4.12 DEDUG UNIL oottt 23-27
23.5 Programming MOGEIocuiiiiiiee et sre e 23-27
23.5.1 Register INItIaliZationcccooieiioiicec e 23-27
23.5.2 TASK IMIBITIOTY ..ottt bbbt 23-28
23.6 TIMING DIAQIAIMS ...iiviiiiieieitieieeie st e e e e e e e s e e te e esteeseeaseesseassesseesseaseeaseeseaneesseesenneenseaneens 23-30
23.6.1 Level-Triggered REQUESESccviieiieiieeie ettt te e sra e 23-30
23.6.2 Edge-Triggered REQUESTScccooeiiiiiiiisiieesie et 23-30
23.6.3 PIpelined REQUESLSuecieiiieiieie ettt e e e e e seeeneenns 23-31
Chapter 24
Comm Bus FIFO Interface
ot 101 (0 To Ut oo OSSPSR 24-1
24.1.1 BIOCK DIGQIAM ...ttt bbb 24-1
24.1.2 OVEIVIBW ..ottt sttt bbbt bbbt ettt b e bbb beene e 24-1
24.1.3 FRALUIES .. .eieeeeiieeeee ettt ettt h e bt bRt e R e e n e b e nn e neereas 24-2
24.2 Memory Map/Register DefiNITION ..o 24-2
24.2.1 FIFO INterface REJISIEIScciveiuiiieiieieeie st esiesee e ste e e et sre e e e ae e sneeneeas 24-2
24.3 FUNCLIONAI DESCIIPLION ..cvviiiiiiiicie ettt te et e e e s aeenesreesteeneenneeneens 24-12
R T R o (o111 of0 1 (] OSSR 24-12
24.3.2 WAt CONAITIONS ...oviiiiiiiitieieie et b et 24-14
I T T 1 (0T g =1 1] 1o OSSO 24-16
24.3.4 DeDUY OPEIALIONcciiiiiiieiiiieieee bbbt 24-17
Chapter 25
Comm Timer Module (CTM)
251 INEFOTUCTION ..vtiitiiiiteiti ettt bbbt bbb et e bbb bbb bbb 25-1
pA T I R =1 (oot B T Vo - OSSPSR 25-1
25.1.2 OVEIVIEW ..eoviiieeieeiie ettt sttt et et e st et e e st e e teeteese e e beenteeneesseeteaneeabeeteaneeaneeneeas 25-3
25.2 EXEEINAL SIGNAISoeeiiiiciece ettt ettt nae et e reenee e 25-3
25.2.1 Comm Timer External CIOCK[7:0]oooiiiiiieiiie e 25-3
25.3 Memory Map/Register DefiNITIONcooiiiiiiiiiiiiee e 25-4
25.3.1 Timer Module REGISIEr IMIAD ...c..iiieiieiecie st 25-5

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor

Xvii

25.3.2 ReQIStEr DESCIIPLIONSc.viiiiiiiieiti ettt ettt et sae e teenneanaesreenees 25-5

25.4 FUNCLIONAI DESCIIPIION ..iviiiiiiieitieie ettt bt b et et b e b e eere et enee e 25-9
25.4.1 Fixed and Variable Timers In Baud Clock Generator Modeccccocvviieiciiiennnn. 25-9
25.4.2 Fixed Timer Channel in Task Initiator MOdecccccoveviiiniiininiieneeeee e 25-9
25.4.3 Variable Timer Channel in Task Initiator MOdecccceveiieiiiniieiese e 25-11
Chapter 26
Programmable Serial Controller (PSC)
26.1 INEFOTUCTION ..ottt bbbt bbbt b et e bbb bbbt b 26-1
A I R =1 (oot B T To] -V SRR PTRRPRSN 26-1
26.1.2 OVEIVIEW ..eoviiiieiieeie ettt sttt e st e te e e st et e e st e eteenteeseeebeeteeneesseeteeneenreeteaneeaneeneeas 26-1
26.1.3 FRALUIESeeeeieieieiee ittt 26-1
26.1.4 MOdeS OF OPEIAtiONccveeiiiieiieie ittt e e reesreennesraenees 26-1
26.2 SIGNAI DESCIIPTION ...iiiiiitieiieteiete ettt bbbt bbbt e et b et bbbt b 26-2
26.2.1 PSCNCTS/PSCBCLEK ..ottt 26-2
26.2.2 PSCNRTS/PSCFSYNC ..ottt sttt sttt 26-2
T T = 101 1 (o SRS 26-2
F A S o 1S (o S SU S SURRN 26-3
26.2.5 Signal Properties in EACh MOUEcccooieiiiiieiicie e 26-3
26.3 Memory Map/Register DefiNITION ...t 26-3
26.3.1 OVEIVIBW ..ottt b bbbttt ettt b bbbttt ne e 26-3
26.3.2 Module MEmOIY IMIADccviiiieieiie et re et sneenne e 26-3
26.3.3 ReQISLEr DESCIIPLIONScuviiiiiiiitiitisie sttt 26-5
26.4 FUNCLIONAI DESCIIPLION ..cvviitiiiiieieeie sttt e e et te e e ta et e anaesneeaesreesreeneeaneeneens 26-37
26.4.1 UART MOUE ..ottt bbbttt bbbt 26-37
26.4.2 MUIIAIOP MOGE ...t 26-38
26.4.3 MOUEMB MOUEocuiiiiiiiitieiieieie ettt bbbttt 26-39
26.4.4 MOUEMLE IMOUEooiiiiiiiiieiieieie ettt 26-40
26.4.5 ACOT MOUE ...oviieecieeieeeee ettt b ettt r et e reeneenes 26-41
26.4.6 SIR IMIOUE ...ttt bbbttt bbbt bbb 26-43
26.4.7 MIR IMOE ..ottt bbbttt eas 26-43
BT T w1 Y (oo PSR PSS 26-44
26.4.9 PSC FIFO SYSIEIM ..ottt bbbt 26-45
26.4.10 LOOPING MOAESooovveiiieiicie sttt ettt e e e te e e sre e reanes 26-48
26.5 RGBS ..eiiiiiiii ittt b bR bt bt e R e e bt e Rt e et e e be e e et e beeaneeenee s 26-49
26.5.1 GENEIAL oo 26-49
26.5.2 Description of Reset OPErationcccccveieeiieiieieeie e 26-49
26.6 INTEITUDPLS ..ottt bbbtttk b e e bt e bt b et abeenne s 26-50
26.6.1 Description of Interrupt OPerationcccoceveeieeiieeresiie e see e 26-50
26.7 SOTtWAIE ENVIFONIMENTooviiiiiiiieite ittt ettt bbb eneareans 26-50
A R €T o =T - | USSR 26-50
P o o T U > U1 o] oSSR 26-51
26.7.3 PrOQramMMINGcooioeeiieieeiesteeie e steestesseesteetesseesaeebesseesteeseesbeebeaseesseesbeaneesreensesnes 26-57

MCF547x Reference Manual, Rev. 5

xviii Freescale Semiconductor

Chapter 27
DMA Serial Peripheral Interface (DSPI)

27.1 OVEIVIEW ..evtiieie ittt sttt b et b e st e st s e et e b e b e e b e bt e bt e Rt e Rt e st e s et et e b e be e b et e e benbenbeen e 27-1
27.2 FRALUIES ...ttt ekttt b e h bt e bt e e b et et e e e he e e R bt e ehe e e R b e e e b e e e ne e e be e ebr e e nreeneeeanes 27-1
PG T =] (o Tt QI - To | = o SRS 27-2
WA VT [T O o 1=T - L o] o USSR 27-2
A R \V/ - 1 T gl 1Y/ o o [PRSP PRRN 27-2
27.4.2 SIAVE IMIOUE ...ttt bbbt 27-2
27.5 SigNal DESCIIPLION ..uviiviiiiecie ettt et et e s e s be e b e e b e e s beesbesseesbeeneesreesneenee e 27-3
27.5. 1 OVEIVIBW ..ottt ettt e b st e st e teene e e be e teeneesseeteeneesreeteaneeaneeneeas 27-3
27.5.2 Detailed Signal DeSCIIPLIONSccveiieiiieieiieie st este st e e ae e e e aneeas 27-3
27.6 Memory Map and REJISIEISccviiiiiieie ettt re et e st e e neesraeneennee e 27-4
27.6.1 DSPI Module Configuration Register (DMCR)cccooiiiiiiiiiiiniseseeeeeee e 27-5
27.6.2 DSPI Transfer Count Register (DTCR)ccoveieiieiiiie e 27-7
27.6.3 DSPI Clock and Transfer Attributes Registers 0—7 (DCTARN)coovevvvveveiiiccieennn, 27-7
27.6.4 DSPI Status RegIStEr (DSRY)ooviiiiiiiiiiiiiieieee et 27-11
27.6.5 DSPI DMA/Interrupt Request Select Register (DIRSR)c.cccevevveveiiiesieieceee 27-13
27.6.6 DSPI TX FIFO RegiSter (DTFR)cccviiiiiiiieieiesie e 27-15
27.6.7 DSPI RX FIFO Register (DRFR)ccviiiiieieieeiese ettt 27-16
27.6.8 DSPI Tx FIFO Debug Registers 0—=3 (DTFDRN)cccocovevieiieiiee e 27-17
27.6.9 DSPI Rx FIFO Debug Registers 0—3 (DRFDRN)cccevveiieiiiicieeie e 27-17
27.7 FUNCLIONAI DESCIIPTION ..ottt ettt bbbt 27-18
27.7.1 Start and Stop of DSPI Transferscccccveveiieiicie e 27-19
27.7.2 Serial Peripheral Interface (SPI)covoiiiiiiee e 27-20
27.7.3 DSPI Baud Rate and Clock Delay GEnerationccccooveerieieeienenenc e 27-22
27.7.4 TranSTer FOIMALScviiiieieieieie bbbt 27-25
27.7.5 Continuous Serial Communications CIOCKccccoiiiiiiiiiiiiiiieeene e 27-30
27.7.6 INtErrUPLS/DMA REQUESTSc.vevieiiiiiiisiieiieii et 27-31
27.8 Initialization and Application INFOrmMationcccccveeiieiiiie e 27-33
27.8.1 HOW t0 Change QUEUEScceeveiuieiiieiesieesieseesteeee e e steesaestaeste e staeseesreesreaneesneenas 27-33
27.8.2 Baud RAe SEIHINGSeeveiiieiiieiiie ittt 27-33
27.8.3 DEIAY SEILINGS ...eeveeiieiieeieeie sttt ettt a e e e sre e st e te e nnaenes 27-34
27.8.4 Calculation of FIFO PoIinter AJUrSSESccviiiiiierieieiie e see e 27-35
Chapter 28
1°C Interface
P4 I R 111 €0 To (1 o{ £ o o SR 28-1
P2 I I R =1 (oot D T To] -V OSSPSR 28-1
28.1.2 12C OVEIVIBW ...itiiiiiieiieieie ettt bbbt b et e sttt sttt e e e ne e 28-2
28.1.3 FRALUIES ..ottt bttt ettt h e R bbb e Rt et e nnb e b et 28-2
28.2 EXIEINAL SIGNAISooiiieiiiieee ettt ettt ne e e neenee e 28-2
28.3 Memory Map/Register DEFINITIONcccuoiiiiiiiiiiiie e 28-3
28.3.1 12C REQGISIEN IMAD ..cviiiiiieiite ettt 28-3
28.3.2 ReQIStEr DESCIIPLIONScvieiieiiieieeie st et e st e sttt ste et ra e te e sraesae e e e sraesaeaneesneenneas 28-3
28.4 FUNCLIONAI DESCIIPIION ..iviiiiiiieitieit ettt ettt sttt et e b e bt et e b et ene e 28-8
MCF547x Reference Manual, Rev. 5
Freescale Semiconductor XixX

28.4.1 START SIGNAI ..o 28-9

28.4.2 Slave AdAress TranSMISSIONccueiieiirerieeiteseesieeseesressieesae e sreeseesreesteeseesreesseeneens 28-9
28.4.3 STOP SIGNAI ..o.viiiiiiiiieiieiee bbbt 28-9
28.4.4 DAt TIaNSTEIooiiiiiiieie bbbt 28-9
28.4.5 ACKNOWIEAGE ..ottt 28-10
28.4.6 REPEAEU STAITc.eeiiieieeieciee et nn 28-11
28.4.7 Clock Synchronization and Arbitrationccccccevieiiiiciiece e 28-11
28.4.8 Handshaking and Clock StretChingccocoiiiiiiiieee e 28-12
28.5 INItIAliZAtION SEUUEINCEecviiieeeiieiie ettt te et et e e e st e steeneesbeeaeanaesaeeneesreeaneeneens 28-12
28.5.1 Transfer Initiation and INTEITUPLcoveiiiiiii e 28-13
28.5.2 Post-Transfer SOftware RESPONSEccooiiiiiiiiiiieiiee e 28-14
28.5.3 Generation OF STOPccoiiiiiiiieiee et 28-15
28.5.4 Generation of Repeated STARTooiiiiiiiceece e 28-16
28.5.5 SIAVE IMIOUEc.vieeeiciie ettt ettt nnen 28-16
28.5.6 ATDITrAtiON LOST ...ooueiiiieiiiiiieie e 28-18
28.5.7 FIOW CONIOL ...ttt enes 28-18
Chapter 29
USB 2.0 Device Controller
P2 I R 11 0o (1 od £ o o SR 29-1
290.1.1 OVEIVIBW ..ottt sttt ettt bbb bbbt s bbb bbbt 29-1
20.1.2 FRALUIES .. .eieeeeiiee ettt b ettt h et R e et e b e n e b e e neeres 29-1
29.1.3 BIOCK DIGQIAMeiiiiieiiiiee ettt 29-2
29.2 Memory Map/Register DEFINITIONcccveiiiieiiee e 29-4
29.2.1 USB MeMOIY IMAPD .oiiiiiiiiiiiiie ittt sttt be e snba e s b e nnneennnee e 29-4
29.2.2 USB Request, Control, and Status REJISLEISccervreereerieeienierie e siresie e e 29-9
29.2.3 USB COUNEr REJISIEISovveuiiiiieiieeie ettt te et e st sraesae s e sneeaeeneennas 29-23
29.2.4 ENndpoint ConteXt REJISLEISciveiiiiieiieeiie ettt sra e ns 29-27
29.2.5 USB Endpoint FIFO REJISIEISccuoiiiiiiiiiiieieiesienie e 29-34
29.3 FUNCLIONAI DESCIIPLION .cvviiviiiiieiieiie et e e e e e e te e e s taete e s e saeeaesneesteeneeaneeneens 29-47
P TR R 11 (=] 4 10 TP 29-47
29.3.2 DevVvice INITIAHZATIONcccoiieicie e 29-47
29.3.3 EXCEPION HANAIING ..cvveiieiiiiiee et 29-50
29.3.4 Data Transfer OPErationscccccveiiiiieiiecie et sre e nas 29-50
Chapter 30
Fast Ethernet Controller (FEC)
K {0 R 1 0o [od £ o o SRS 30-1
30.1.1 MCF547X FamMily PrOUCEScccvveiiiiecieee et 30-1
{0 B =1 (oot B TT-To] -V SRS 30-1
30.1.3 OVEIVIBW ..ottt ettt sttt te st e et et e e st e s teenteeneeebeeseeneesseeseaneesreeteaneeaneeeens 30-2
30.1.4 FRALUIESeeeeieieeeee ettt n et E e n e 30-3
30.1.5 MOAES OF OPEIALIONeeeiiiiiiiiieitieie sttt sttt sttt esreenbesneesreenee s 30-3
30.2 EXIEINAI SIGNAIS ..ottt 30-4
30.2.1 Transmit CIOCK (ENTXCLK) ..oocuiiiiiieiiee ettt 30-4
MCF547x Reference Manual, Rev. 5
XX Freescale Semiconductor

30.2.2 Receive Clock (ENRXCLK) ...ooiiiiieiiceceseese ettt 30-4
30.2.3 Transmit Enable (ENTXEN) ..o 30-4
30.2.4 Transmit Data[3:0] (ENTXD[3:0]) weooveiieiiiieiiiie e 30-4
30.2.5 Transmit Error (ENTXER) ...ccvoiiiieie ettt 30-5
30.2.6 Receive Data Valid (ENRXDV) ...c.ooiiiiiiiiiieiiiie ettt 30-5
30.2.7 Receive Data[3:0] (ENRXD[3:0]) .eeveeerreerieeieiieiesiesieesieseese e e e esee e seesneesnaens 30-5
30.2.8 Receive Error (ENRXER)ccvoiiiieii ettt 30-5
30.2.9 Carrier SENSE (ENCRS) ...ooiviiiiiiiiie e 30-5
30.2.10 COllSION (ENCOL) .oiviiiiiiiiiiie ettt bbbt 30-5
30.2.11 Management Data CIoCK (ENMDC)coviieiiiie e 30-5
30.2.12 Management Data (ENMDIO)oouoiiiiiiiiiiiieeee e 30-5
30.3 Memory Map/Register DEFINITIONc.cccveiiiieiiei et 30-6
30.3.1 Top Level Module MemOory Mapcccoooveiieiiiieseeie e 30-6
30.3.2 Detailed Memory Map (Control/Status REGISIErS)ccccuvvriririieiiieie e 30-7
30.3.3 MIB Block Counters MemOory Mapcooeceiieieeieiie e esiesiee e ie e e e see e 30-8
30.4 FUNCLIONAI DESCIIPLION ..cuviitiiiiicie ettt te e te et e e e e saeeaeereesteeneeaneeneens 30-43
30.4.1 INItIaliZAtION SEOUENCEoouiieiieiiiite ettt bbb 30-43
30.4.2 Frame Control/Status WOIASccovriiiiieieie e 30-44
30.4.3 Network Interface OPLIONScc.coveiuiiieiiee e 30-46
30.4.4 FEC Frame TranSMISSIONccceiueiueeieieesieseesieaseesseessesseesseessessesssessesssesssessessseenees 30-46
30.4.5 FEC Frame RECEPLIONocviiieiiiieiiesie et ettt ae e e e aneesraeneeenes 30-47
30.4.6 Ethernet Address RECOGNITIONcccocieiiiiiieiicis s 30-48
30.4.7 HAash AIGOTTtNM ..o 30-49
30.4.8 Full Duplex FIOW CONLIOLc.ooiieiecieceee e 30-52
30.4.9 Inter-Packet Gap (IPG) TIME ...cvciieiiiiicieece et 30-53
30.4.10 Collision HANAIINGoouviiiieieiee s 30-53
30.4.11 Internal and External LOOPDACKccooveiiiiiiiice e 30-53
30.4.12 Ethernet Error-Handling ProCEAUIEccoveiieieeie e 30-54
30.4.13 MII DAta FIameooiiiiiieiieeiie ettt sttt et 30-55
30.4.14 MII Management Frame SIrUCTUIEcoovviiiiiiiiiie i 30-56
Chapter 31
Mechanical Data
I o 1017 o[- SRS 31-1
K I 1 T T | SRR 31-1
31.3 MeChaniCal DIAQIAIMSccuiiiieiieie ettt e et te et e s esae e e e sreesteeseesseeteaneesreenreenee e 31-8
31.3.1 MCF5475/5474 Mechanical Diagramccccceeveiieiesiieieeie e 31-8
31.3.2 MCF5473/5472 Mechanical DIagramcccccereriiineninenieeeeeee s 31-12
31.4 MCF5471/5470 Mechanical DIAQramcccccvevieiieeieiiieneeie e e se e sre e e e 31-16
31.5 Mechanicals 388-pin PBGA Package OULIINEccciieiiiieiiece e 31-19

Appendix A
MCF547x Memory Map

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor XXi

MCF547x Reference Manual, Rev. 5

XXii Freescale Semiconductor

About This Book

The primary objective of this reference manual is to define the functionality of the MCF547x processors
for use by software and hardware developers.

The information in this book is subject to change without notice, as described in the disclaimers on the title
page of this book. As with any technical documentation, it is the readers’ responsibility to be sure they are
using the most recent version of the documentation.

To locate any published errata or updates for this document, refer to the world-wide web at
http://www.freescale.com/coldfire.

Audience

This manual is intended for system software and hardware developers and applications programmers who
want to develop products for the MCF547x. It is assumed that the reader understands operating systems,
microprocessor system design, basic principles of software and hardware, and basic details of the ColdFire
architecture.

Organization

Following is a summary and a brief description of the major sections of this manual:

» Chapter 1, “Overview,” includes general descriptions of the modules and features incorporated in
the MCF547x, focussing in particular on new features.

» Chapter 2, “Signal Descriptions,” provides an alphabetical listing of MCF547x signals, including
which are inputs or outputs, how they are multiplexed, and the state of each signal at reset.

o Part I, “Processor Core,” is intended for system designers who need to understand the operation of
the MCF547x ColdFire core and its enhanced multiply/accumulate (EMAC) execution unit. It
describes the programming and exception models, Harvard memory implementation, and debug
module. Part 1 contains the following chapters:

— Chapter 3, “ColdFire Core,” provides an overview of the microprocessor core of the
MCF547x. The chapter begins with a description of enhancements from the V3 ColdFire core,
and then fully describes the VV4e programming model as it is implemented on the MCF547x. It
also includes a full description of exception handling, data formats, an instruction set summary,
and a table of instruction timings.

— Chapter 4, “Enhanced Multiply-Accumulate Unit (EMAC),” describes the MCF547x
enhanced multiply/accumulate unit, which executes integer multiply, multiply-accumulate, and
miscellaneous register instructions. The EMAC is integrated into the operand execution
pipeline (OEP).

— Chapter 5, “Memory Management Unit (MMU),” describes describes the ColdFire virtual
memory management unit (MMU), which provides virtual-to-physical address translation and
memory access control.

— Chapter 6, “Floating-Point Unit (FPU),” describes instructions implemented in the
floating-point unit (FPU) designed for use with the ColdFire family of microprocessors.

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor XXiii

http://www.freescale.com/coldfire

Chapter 7, “Local Memory,” describes the MCF547x implementation of the ColdFire V4e
local memory specification.

Chapter 8, “Debug Support,” describes the Revision C enhanced hardware debug support in the
MCF547x. This revision of the ColdFire debug architecture encompasses earlier revisions.

Part I1, “System Integration Unit,” describes the system integration unit, which provides overall
control of the bus and serves as the interface between the ColdFire core processor complex and
internal peripheral devices. It includes a general description of the SIU and individual chapters that
describe components of the SIU, such as the interrupt controller, general purpose timers, slice
timers, and GPIOs. Part 11 contains the following chapters:

Chapter 9, “System Integration Unit (SIU),” describes the SIU programming model, bus
arbitration, and system-protection functions for the MCF547x.

Chapter 10, “Internal Clocks and Bus Architecture,” describes the clocking and internal buses
of the MCF547x and discusses the main functional blocks controlling the XL bus and the XL
bus arbiter.

Chapter 11, “General Purpose Timers (GPT),” describes the functionality of the four general
purpose timers, GPTO0-GPT3.

Chapter 12, “Slice Timers (SLT),” describes the two slice timers, shorter term periodic
interrupts, used in the MCF547x.

Chapter 13, “Interrupt Controller,” describes operation of the interrupt controller portion of the
SIU. Includes descriptions of the registers in the interrupt controller memory map and the
interrupt priority scheme.

Chapter 14, “Edge Port Module (EPORT),” describes EPORT module functionality.

Chapter 15, “GPIO,” describes the operation and programming model of the parallel port pin
assignment, direction-control, and data registers.

Part 111, “On-Chip Integration,” describes the on-chip integration for the MCF547x device. It
includes descriptions of the system SRAM, FlexBus interface, SDRAM controller, PCI, and SEC
cryptography accelerator. Part 111 contains the following chapters:

Chapter 16, “32-Kbyte System SRAM,” describes the MCF547x on-chip system SRAM
implementation. It covers general operations, configuration, and initialization.

Chapter 17, “FlexBus,” describes data transfer operations, error conditions, and reset
operations. It describes transfers initiated by the MCF547x and by an external master, and
includes detailed timing diagrams showing the interaction of signals in supported bus
operations.

Chapter 18, “SDRAM Controller (SDRAMC),” describes configuration and operation of the
synchronous DRAM controller component of the SIU. It includes a description of signals
involved in DRAM operations, including chip select signals and their address, mask, and
control registers.

Chapter 19, “PCI Bus Controller,” details the operation of the PCI bus controller for the
MCF547x.

Chapter 20, “PCI Bus Arbiter Module,” describes the MCF547x PCI bus arbiter module,
including timing for request and grant handshaking, the arbitration process, and the register in
the PCI bus arbiter programing model.

MCF547x Reference Manual, Rev. 5

XXV

Freescale Semiconductor

Suggested Reading

— Chapter 21, “Integrated Security Engine (SEC),” provides an overview of the MCF547x

security encryption controller.

— Chapter 22, “IEEE 1149.1 Test Access Port (JTAG),” describes configuration and operation of

the MCF547x JTAG test implementation. It describes the use of JTAG instructions and
provides information on how to disable JTAG functionality.

Part IV, “Communications Subsystem,” contains chapters that discuss the operation and
configuration of the communications 1/0 subsystem including the MCF547x multichannel DMA,
communications timer, PSC, FEC, DSPI, and USB2, and 12C.

— Chapter 23, “Multichannel DMA,” provides an overview of the multichannel DMA controller

module including the operation of the external DMA request signals.

Chapter 25, “Comm Timer Module (CTM),” contains a detailed description of the
communications timer module, which functions as a baud clock generator or as a DMA task
initiator.

Chapter 26, “Programmable Serial Controller (PSC),” provides an overview of asynchronous,
synchronous, and IrDA 1.1 compliant receiver/transmitter serial communications of the
MCF547x.

Chapter 27, “DMA Serial Peripheral Interface (DSPI),” describes the use of the DMA serial
peripheral interface (DSPI) implemented on the MCF547x processor, including details of the
DSPI data transfers. The chapter concludes with timing diagrams and the DSPI features that
support Tx and Rx FIFO queue management.

Chapter 28, “I2C Interface,” describes the MCF547x 12C module, including 12C protocol,
clock synchronization, and the registers in the 12C programing model. It also provides
programming examples.

Chapter 29, “USB 2.0 Device Controller,” provides an overview of the USB 2.0 device
controller module used in the MCF547x.

Chapter 30, “Fast Ethernet Controller (FEC),” provides a feature-set overview, a functional
block diagram, and transceiver connection information for both MI1 (Media Independent
Interface) and 7-wire serial interfaces. It also provides describes operation and the
programming model.

Part V, “Mechanical,” provides a pinout and both electrical and functional descriptions of the
MCF547x signals. It also describes how these signals interact to support the variety of bus
operations shown in timing diagrams.

— Chapter 31, “Mechanical Data,” provides a functional pin listing and package diagram for the

MCF547x.

Suggested Reading

This section lists additional reading that provides background for the information in this manual as well as
general information about the ColdFire architecture.

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor XXV

General Information

The following documentation provides useful information about the ColdFire architecture and computer
architecture in general:

ColdFire Programmers Reference Manual (CFPRM)

Using Microprocessors and Microcomputers: The Motorola Family, William C. Wray, Ross
Bannatyne, Joseph D. Greenfield

Computer Architecture: A Quantitative Approach, Second Edition, by John L. Hennessy and David
A. Patterson.

Computer Organization and Design: The Hardware/Software Interface, Second Edition, David A.
Patterson and John L. Hennessy.

ColdFire Documentation

The ColdFire documentation is available from the sources listed on the back cover of this manual.
Document order numbers are included in parentheses for ease in ordering.

ColdFire Programmers Reference Manual, R1.0 (CFPRM)

Reference manuals—These books provide details about individual ColdFire implementations and
are intended to be used in conjunction with The ColdFire Programmers Reference Manual. These
include the following:

— ColdFire CF4e Core User's Manual (V4ECFUM)

— MCF5475 Reference Manual (MCF5475RM)

— MCF5485 Reference Manual (MCF5485RM)

Additional literature on ColdFire implementations is being released as new processors become available.
For a current list of ColdFire documentation, refer to the World Wide Web at
http://www.freescale.com/coldfire.

Conventions
This document uses the following notational conventions:

MNEMONICS In text, instruction mnemonics are shown in uppercase.
mnemonics In code and tables, instruction mnemonics are shown in lowercase.
italics Italics indicate variable command parameters.

Book titles in text are set in italics.

0x0 Prefix to denote hexadecimal number

0bO0 Prefix to denote binary number

REG[FIELD] Abbreviations for registers are shown in uppercase. Specific bits, fields, or ranges
appear in brackets. For example, RAMBAR[BA] identifies the base address field
in the RAM base address register.

nibble A 4-Dbit data unit

byte An 8-bit data unit

word A 16-bit data unit

MCF547x Reference Manual, Rev. 5

XXVi

Freescale Semiconductor

http://www.freescale.com/coldfire

longword
X
n

-

&
I

A 32-bit data unit

In some contexts, such as signal encodings, x indicates a don’t care.

Used to express an undefined numerical value

NOT logical operator
AND logical operator
OR logical operator

Register Conventions

This reference manual uses the register diagram format shown below.

31

30 29 28 27 26 25 24 23

22

21

20

Acronyms and Abbreviations

19

18

17

16

R O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
w
Reset| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 14 13 12 11 10 9 8 4 3 2 1 0
R| O 0 0 0 0 0 0 0 0 0 0 DFL
w
Reset| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Reg 0x00C
Addr

Table i. Example Register Diagram

Acronyms and Abbreviations
Table ii lists acronyms and abbreviations used in this document.

Table ii. . Acronyms and Abbreviated Terms

Term Meaning
ADC Analog-to-digital conversion
ALU Arithmetic logic unit
AVEC Autovector
BDM Background debug mode
BIST Built-in self test
BSDL Boundary-scan description language
CODEC Code/decode
comm bus Internal communications bus
DAC Digital-to-analog conversion
DMA Direct memory access
DSP Digital signal processing

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor

Table ii. . Acronyms and Abbreviated Terms (continued)

Term Meaning
EA Effective address
EDO Extended data output (DRAM)
FIFO First-in, first-out
GPIO General-purpose 1/O
e Inter-integrated circuit
IEEE Institute for Electrical and Electronics Engineers
IFP Instruction fetch pipeline
IPL Interrupt priority level
JEDEC Joint Electron Device Engineering Council
JTAG Joint Test Action Group
LIFO Last-in, first-out
LRU Least recently used
LSB Least-significant byte
Isb Least-significant bit
MAC Multiple accumulate unit
MBAR Memory base address register
MSB Most-significant byte
msb Most-significant bit
Mux Multiplex
NOP No operation
OEP Operand execution pipeline
PC Program counter
PCLK Processor clock
PLL Phase-locked loop
PLRU Pseudo least recently used
POR Power-on reset
PQFP Plastic quad flat pack
RISC Reduced instruction set computing
Rx Receive
SIM System integration module
SOF Start of frame
TAP Test access port
TTL Transistor-to-transistor logic
TX Transmit

MCF547x Reference Manual, Rev. 5

XXViii

Freescale Semiconductor

Terminology and Notational Conventions

Table ii. . Acronyms and Abbreviated Terms (continued)

Term Meaning
UART Universal asynchronous/synchronous receiver transmitter
XLB bus Internal 64-bit bus

Terminology and Notational Conventions
Table iii shows notational conventions used throughout this document.

Table iii. Notational Conventions

Instruction Operand Syntax

Opcode Wildcard

cc Logical condition (example: NE for not equal)

Register Specifications

An Any address register n (example: A3 is address register 3)
Ay,AX Source and destination address registers, respectively
Dn Any data register n (example: D5 is data register 5)
Dy,Dx Source and destination data registers, respectively
Rc Any control register (example VBR is the vector base register)
Rm MAC registers (ACC, MAC, MASK)
Rn Any address or data register
Rw Destination register w (used for MAC instructions only)
Ry,Rx Any source and destination registers, respectively
Xi index register i (can be an address or data register: Ai, Di)

Register Names

ACC MAC accumulator register
CCR Condition code register (lower byte of SR)
MACSR MAC status register
MASK MAC mask register
PC Program counter
SR Status register

Port Name

PSTDDATA Processor status/debug data port

Miscellaneous Operands

#<data> Immediate data following the 16-bit operation word of the instruction

<ea> Effective address

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor XXiX

Table iii. Notational Conventions (continued)

Instruction Operand Syntax

<ea>y,<ea>Xx | Source and destination effective addresses, respectively

<label> Assembly language program label
<list> List of registers for MOVEM instruction (example: D3-DO0)
<shift> Shift operation: shift left (<<), shift right (>>)
<size> Operand data size: byte (B), word (W), longword (L)
bc Both instruction and data caches
dc Data cache
ic Instruction cache
<vector> Identifies the 4-bit vector number for trap instructions
<> identifies an indirect data address referencing memory
<XXX> identifies an absolute address referencing memory
dn Signal displacement value, n bits wide (example: d16 is a 16-bit displacement)
SF Scale factor (x1, x2, x4 for indexed addressing mode, <<1n>> for MAC operations)
Operations
+ Arithmetic addition or postincrement indicator

- Arithmetic subtraction or predecrement indicator

X Arithmetic multiplication

/ Arithmetic division

~ Invert; operand is logically complemented

& Logical AND
| Logical OR
n Logical exclusive OR
<< Shift left (example: DO << 3 is shift DO left 3 bits)
>> Shift right (example: DO >> 3 is shift DO right 3 bits)
- Source operand is moved to destination operand
«—> Two operands are exchanged

sign-extended | All bits of the upper portion are made equal to the high-order bit of the lower portion

If <condition> | Test the condition. If true, the operations after ‘then’ are performed. If the condition is false and the

then optional ‘else’ clause is present, the operations after ‘else’ are performed. If the condition is false
<operations> | and else is omitted, the instruction performs no operation. Refer to the Bcc instruction description
else as an example.
<operations>

Subfields and Qualifiers

{ Optional operation
0 Identifies an indirect address
dp Displacement value, n-bits wide (example: dq¢g is a 16-bit displacement)

MCF547x Reference Manual, Rev. 5

XXX Freescale Semiconductor

Terminology and Notational Conventions

Table iii. Notational Conventions (continued)

Instruction Operand Syntax
Address Calculated effective address (pointer)
Bit Bit selection (example: Bit 3 of DO)
Isb Least significant bit (example: Isb of DO)
LSB Least significant byte
LSW Least significant word
msh Most significant bit
MSB Most significant byte
MSW Most significant word
Condition Code Register Bit Names
C Carry
N Negative
\% Overflow
X Extend
z Zero
Table iv. MCF547x Revision History
Section/Page Substantive Changes
Revision 1.0 (03/2004)
Initial release.

Revision 1.1 (03/2004

Figure 15-1/Page 15-2

Changed instances of FEC2 to FEC1 and FEC1 to FECO.

30.3.1/30-6—
30.3.3.1/30-10

Changed instances of FEC2 to FEC1 and FEC1 to FECO.

Revision 1.2 (03/2004)

Removed FlexCAN chapter. The MCF547x does not have a FlexCAN.

Revision 2.0 (10/2004)

Many content changes, the biggest being greatly enhancing the MC-DMA chapter and adding Clocks and
Internal Buses chapter. Many editorial changes.

Revision 2.1 (10/2004)

Chapter 17 Took out FlexCan chapter. Fixed timing diagrams in FlexBus chapter.
Revision 3 (01/2006)
Throughout See revision 3 or higher of the MCF5475RMAD document for a list of all changes between the previous

revision.

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor XXXI

Table iv. MCF547x Revision History (continued)

Section/Page

Substantive Changes

Revision 4 (07/2006)

Throughout See revision 4 or higher of the MCF5475RMAD document for a list of all changes between the previous
revision.
Revision 5 (4/2009)
Throughout See revision 5 or higher of the MCF5475RMAD document for a list of all changes between the previous

revision.

MCF547x Reference Manual, Rev. 5

XXXii

Freescale Semiconductor

Chapter 1
Overview

This chapter provides an overview of the MCF547x microprocessor features, including the major
functional components.

1.1 MCF547x Family Overview

The MCF547x family is based on the ColdFire V4e core, a complex which comprises the ColdFire V4
central processor unit (CPU), an enhanced multiply-accumulate unit (EMAC), amemory management unit
(MMU), a double-precision floating point unit (FPU) conforming to standard IEEE-754, and controllers
for caches and local data memories. The MCF547x family is capable of performing at an operating
frequency of up to 266 MHz or 410 MIPS (Dhrystone 2.1).

To maximize throughput, the MCF547x family incorporates three independent external bus interfaces:

1. The general-purpose local bus (FlexBus) is used for system boot memories and simple peripherals
and has up to six chip selects.

2. Program code and data can be stored in SDRAM connected to a dedicated 32-bit double data rate
(DDR) bus that can run at up to one-half of the CPU core frequency. The glueless DDR SDRAM
controller handles all address multiplexing, input and output strobe timing, and memory bus clock
generation.

3. A 32-bit PCI bus compliant with the version 2.2 specification and running at a typical frequency
of 33 MHz or 66 MHz supports peripherals that require high bandwidth, the ability to arbitrate for
bus mastership, and access to internal MCF547x memory resources.

The MCF547x family provides substantial communications functionality by integrating the following
connectivity peripherals:

» Up to two 10/100 Mbps fast Ethernet controllers (FECs)

* One optional USB 2.0 device (slave) module with seven endpoints and an integrated transceiver
* Up to four UART/USART/IRDA/modem programmable serial controllers (PSCs)

» One DMA serial peripheral interface (DSPI)

« One inter-integrated circuit (1°C™) bus controller

Additionally, the MCF547x provides hardware support for a range of Internet security standards with an
optional bus-mastering cryptography accelerator. This module incorporates units to speed DES/3DES and
AES block ciphers, the RC4 stream cipher, bulk data hashing (MD5/SHA-1/SHA-256/HMAC), and
random number generation. Hardware acceleration of these functions is critical to avoiding the throughput
bottlenecks associated with software-only implementations of SSH, SSL/TLS, IPsec, SRTP, WEP, and
other security standards. The incorporation of cryptography acceleration makes the MCF547x family a
compelling solution for a wide range of office automation, industrial control, and SOHO networking
devices that must have the ability to securely transmit critical equipment control information across
typically insecure Ethernet data networks.

Additional features of MCF547x products include a watchdog timer, two 32-bit slice timers for RTOS
scheduling and alarm functionality, up to four 32-bit general-purpose timers with capture, compare, and
pulse width modulation capability, a multisource vectored interrupt controller, a phase-locked loop (PLL)
to generate the system clock, 32 Kbytes of SRAM for high-speed local data storage, and multiple
general-purpose 1/0O ports.

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor 1-1

b -

With on-chip support for multiple common communications interfaces, MCF547x products require only
the addition of memories and certain physical layer transceivers to be cost-effective system solutions for
many applications. Such applications include industrial routers, high-end POS terminals, building
automation systems, and process control equipment.

MCF547x products require four supply voltages: 1.5V for the high-performance, low power, internal core
logic, 2.5V for the DDR SDRAM bus interface, 1.25V for the DDR SDRAM Vggg, and 3.3V for all other
1/0 functionality, including the PCI and FlexBus interfaces.

1.2 MCF547x Block Diagram
Figure 1-1 shows a top-level block diagram of the MCF547x products.

ColdFire V4e Core PLL
MMU, FPU
EMAC
32K I-cache
32K D-cache XL Bus Memory FlexBus
Arbiter Controller Controller
XL Bus
’Dé Interrupt Master/Slave
= Controller Interface
20
28
?8 [watcha PCI 2.2
2 at_c og Cryptographg .
= Timer Accelerator Controller
Slice % E
Timers x 2 = [
@)
GP 32K System XL Bus
Timers x 4 o SRAM Read/Write
z|3
T
L1 < |o <]
n s S|
2le 3=
Multi-Channel DMA PCI Interface
Master Bus Interface & FIFOs & FIFOs 2 c
S o
CommBus 8%
Sho
235
EN
£o
2c PSC x 4 FEC1 FEC22 usB20 | ©7
DSPI | X DEVICEL

1 Available in MCF5475, MCF5474, MCF5473, and MCF5472 devices.
2 Available in MCF5475, MCF5474, MCF5471, and MCF5470 devices.
3 Available in MCF5475, MCF5473, and MCF5471 devices.

Figure 1-1. MCF547x Block Diagram

MCF547x Reference Manual, Rev. 5

1-2 Freescale Semiconductor

MCF547x Family Products

1.3 MCF547x Family Products

Table 1-1 summarizes the products available within the MCF547x product family. All products are
available in pin-compatible, 388-pin PBGA packaging allowing for ease of migration between products
within the family. A printed circuit board designed using the MCF5475/4 footprint is compatible with any
of the MCF547x family devices.

Table 1-1. MCF547x Family Products

Product Performance Features Temperature Range
MCF5475 410 MIPS Two 10/100 Ethernet Controllers O0to70°C
266 MHz USB 2.0 Device with Integrated PHY

v2.2 PCI Controller
DDR Memory Controller
Encryption Accelerator

MCF5474 410 MIPS Two 10/100 Ethernet Controllers 0to 70°C

266 MHz USB 2.0 Device with Integrated PHY
v2.2 PCI Controller

DDR Memory Controller

MCF5473 308 MIPS One 10/100 Ethernet Controller 0to70°C

200 MHz USB 2.0 Device with Integrated PHY
v2.2 PCI Controller

DDR Memory Controller

Encryption Accelerator

MCF5472 308 MIPS One 10/100 Ethernet Controller 0to 70° C

200 MHz USB 2.0 Device with Integrated PHY
v2.2 PCI Controller

DDR Memory Controller

MCF5471 308 MIPS Two 10/100 Ethernet Controllers O0to 70°C
200 MHz v2.2 PCI Controller

DDR Memory Controller
Encryption Accelerator

MCF5470 308 MIPS Two 10/100 Ethernet Controllers 0to 70°C
200 MHz v2.2 PCI Controller
DDR Memory Controller

1.4 MCF547x Family Features

» ColdFire V4e core
— Limited superscalar V4 ColdFire processor core
— Up to 266 MHz peak internal core frequency (410 Dhrystone 2.1 MIPS)
— Harvard architecture
— 32-Kbyte instruction cache
— 32-Kbyte data cache
— Memory management unit (MMU)
— Separate, 32-entry, fully-associative instruction and data translation lookahead buffers
— Floating point unit (FPU)
— Double-precision support that conforms to IEEE-754 standard

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor 1-3

— Eight floating point registers
Internal master bus (XLB) arbiter
— High performance split address and data transactions
— Support for various parking modes
32-bit double data rate (DDR) synchronous DRAM (SDRAM) controller
— 66-133 MHz operation
— Supports both DDR and SDR DRAM
— Built-in initialization and refresh
— Up to four chip selects enabling up to 1 GB of external memory
\ersion 2.2 peripheral component interconnect (PCI) bus
— 32-bit target and initiator operation
— Support for up to five external PCI masters
— 33-66 MHz operation with PCI bus to XLB divider ratios of 1:1, 1:2, and 1:4
Flexible multi-function external bus (FlexBus)
— Supports operation with the following:
— Non-multiplexed 32-bit address and 32-bit data (32-bit address muxed over
PCI bus—PCI not usable)
— Multiplexed 32-bit address and 32-bit data (PCI usable)
— Multiplexed 32-bit address and 16-bit data
— Multiplexed 32-bit address and 8-bit data

— Provides a glueless interface to boot Flash/ROM, SRAM, and peripheral devices

— Up to six chip selects

— 33-66 MHz operation

Communications 1/O subsystem

— Intelligent 16-channel DMA controller

— Dedicated DMA channels for receive and transmit on all subsystem peripheral interfaces

— Up to two 10/100 Mbps fast Ethernet controllers (FECs), each with separate 2-Kbyte receive
and transmit FIFOs

— Universal serial bus (USB) version 2.0 device controller
— Support for one control and six programmable endpoints — interrupt, bulk, or isochronous
— 4 Kbytes of shared endpoint FIFO RAM and 1 Kbyte of endpoint descriptor RAM
— Integrated physical layer interface

— Up to four programmable serial controllers (PSCs) each with separate 512-byte receive and
transmit FIFOs for UART, USART, modem, codec, and IrDA 1.1 interfaces

— 12C peripheral interface
— DMA serial peripheral interface (DSPI)
Optional security encryption controller (SEC) module
— Execution units for the following:
— DES/3DES block cipher
— AES block cipher

— RC4 stream cipher

MCF547x Reference Manual, Rev. 5

1-4

Freescale Semiconductor

MCF547x Family Features

— MD5/SHA-1/SHA-256/HMAC hashing

— Random number generator compliant with FIPS 140-1 standards for randomness and
non-determinism

— Dual-channel architecture permits single-pass encryption and authentication
* 32-Kbyte system SRAM
— Arbitration mechanism shares bandwidth between internal bus masters (CPU, cryptography
accelerator, PCI, and DMA)
» System integration unit (SIU)
— Interrupt controller
— Watchdog timer
— Two 32-bit slice timers for periodic alarm and interrupt generation
— Up to four 32-bit general-purpose timers with capture, compare, and PWM capability
— General-purpose 1/0 ports multiplexed with peripheral pins
* Debug and test features
— Core debug support via ColdFire background debug mode (BDM) port
— Chip debug support via JTAG/ IEEE 1149.1 test access port
* PLL and clock generator
— 30-66.67 MHz input frequency range
» Operating Voltages
— 1.5V internal logic
— 2.5V DDR SDRAM bus I/0 (1.25V Vggp)
— 3.3V PCI, FlexBus, and all other 1/0
» Estimated power consumption
— <1.5W

141 ColdFire V4e Core Overview

The ColdFire V4e core is a variable-length RISC, clock-multiplied core that includes a Harvard memory
architecture, branch cache acceleration logic, and limited superscalar dual-instruction issue capabilities.
The limited superscalar design approaches dual-issue performance with the cost of a scalar execution
pipeline.

The ColdFire V4e processor core is comprised of two separate pipelines that are decoupled by an
instruction buffer. The four-stage instruction fetch pipeline (IFP) prefetches the instruction stream,
examines it to predict changes of flow, partially decodes instructions, and packages fetched data into
instructions for the operand execution pipeline (OEP). The IFP can prefetch instructions before the OEP
needs them, minimizing the wait for instructions. The instruction buffer is a 10 instruction, first-in-first-out
(FIFO) buffer that decouples the IFP and OEP by holding prefetched instructions awaiting execution in
the OEP. The OEP includes five pipeline stages: the first stage decodes instructions and selects operands
(DS), and the second stage generates operand addresses (OAG). The third and fourth stages fetch operands
(OC1 and OC?2), and the fifth stage executes instructions (EX).

The ColdFire V4e processor contains a double-precision floating point unit (FPU). The FPU conforms to
the American National Standards Institute (ANSI)/Institute of Electrical and Electronics Engineers (IEEE)
Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Standard 754). The FPU operates on 64-bit,
double-precision floating point data and supports single-precision and signed integer input operands. The
FPU programming model is like that in the MC68060 microprocessor. The FPU is intended to accelerate

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor 1-5

the performance of certain classes of embedded applications, especially those requiring high-speed
floating point arithmetic computations.

The ColdFire V4e processor also incorporates the ColdFire memory management unit (MMU), which
provides virtual-to-physical address translation and memory access control. The MMU consists of
memory-mapped control, status, and fault registers that provide access to translation lookaside buffers
(TLBs). Software can control address translation and access attributes of a virtual address by configuring
MMU control registers and loading TLBs. With software support, the MMU provides demand-paged,
virtual addressing.

The ColdFire VV4e core implements the ColdFire instruction set architecture revision B with support for
floating Point instructions. Additionally, the ColdFire V4e core includes the enhanced
multiply-accumulate unit (EMAC) for improved signal processing capabilities. The EMAC implements a
4-stage execution pipeline, optimized for 32 x 32-bit operations, with support for four 48-bit accumulators.
Supported operands include 16- and 32-bit signed and unsigned integers, as well as signed fractional
operands and a complete set of instructions to process these data types. The EMAC provides superb
support for execution of DSP operations within the context of a single processor at a minimal hardware
cost.

Refer to Chapter 3, “ColdFire Core,” for detailed information on the ColdFire VV4e core architecture.

1.42 Debug Module (BDM)

The ColdFire processor core debug interface is provided to support system debugging in conjunction with
low-cost debug and emulator development tools. Through a standard debug interface, users can access
real-time trace and debug information. This allows the processor and system to be debugged at full speed
without the need for costly in-circuit emulators.

The MCF547x debug module provides support in three different areas:

» Real-time trace support: The ability to determine the dynamic execution path through an
application is fundamental for debugging. The ColdFire solution implements an 8-bit parallel
output bus that reports processor execution status and data to an external BDM emulator system.

» Background debug mode (BDM): Provides low-level debugging in the ColdFire processor
complex. In BDM, the processor complex is halted and a variety of commands can be sent to the
processor to access memory and registers. The external BDM emulator uses a three-pin, serial,
full-duplex channel.

* Real-time debug support: BDM requires the processor to be halted, which many real-time
embedded applications cannot permit. Debug interrupts let real-time systems execute a unique
service routine that can quickly save key register and variable contents and return the system to
normal operation without halting. External development systems can access saved data, because
the hardware supports concurrent operation of the processor and BDM-initiated commands. In
addition, the option is provided to allow interrupts to occur.

143 JTAG

The MCF547x family supports circuit board test strategies based on the Test Technology Committee of
IEEE and the Joint Test Action Group (JTAG). The test logic includes a test access port (TAP) consisting
of a 16-state controller, an instruction register, and three test registers (a 1-bit bypass register, a 256-bit
boundary-scan register, and a 32-bit ID register). The boundary scan register links the device’s pins into
one shift register. Test logic, implemented using static logic design, is independent of the device system
logic. The MCF547x implementation can do the following:

» Perform boundary scan operations to test circuit board electrical continuity

MCF547x Reference Manual, Rev. 5

1-6 Freescale Semiconductor

MCF547x Family Features

» Sample MCF547x system pins during operation and transparently shift out the result in the
boundary scan register

» Bypass the MCF547x for a given circuit board test by effectively reducing the boundary-scan
register to a single bit

» Disable the output drive to pins during circuit-board testing

» Drive output pins to stable levels

1.44 On-Chip Memories

1.4.4.1 Caches

There are two independent caches associated with the ColdFire V4e core complex: a 32-Kbyte instruction
cache and a 32-Kbyte data cache. Caches improve system performance by providing single-cycle access
to the instruction and data pipelines. This decouples processor performance from system memory
performance, increasing bus availability for on-chip DMA or external devices.

1442 System SRAM

The SRAM module provides a general-purpose 32-Kbyte memory block that the ColdFire core can access
in a single cycle. The location of the memory block can be set to any 32-Kbyte address boundary within
the 4-Gbyte address space. The memory is ideal for storing critical code or data structures, for use as the
system stack, or for storing FEC data buffers. Because the SRAM module is physically connected to the
processor's high-speed local bus, it can quickly service core-initiated accesses or memory-referencing
commands from the debug module.

The SRAM module is also accessible by multiple non-core bus masters, such as the DMA controller, the
encryption accelerator, and the PCI Controller.

1.45 PLL and Chip Clocking Options

MCF547x products contain an on-chip PLL capable of accepting input frequencies from 30-66.66 MHz.
Table 1-2 contains the frequencies of the system buses for the members of the MCF547x family under
various core/SDRAM/PCI/Flexbus clocking options.

Table 1-2. MCF547x Family Clocking Options

Clock CLKIN-PCI and Internal XLB, SDRAM bus, Core Erequenc
AD[12:8]* Ratio FlexBus Frequency and PSTCLK Frequency Range ?MHz)y
Range (MHz) Range (MHz) 9
00011 1:2 41.67-66.66 83.33-133.33 166.66—266.66
00101 1:2 25.0-44.42 50.0-88.832 100.0-177.66
01111 1:4 25.0-33.3 100-133.33 200-266.66

All other values of AD[12:8] are reserved.

2 Note that DDR memories typically have a minimum speed of 83 MHz. Some vendors specifiy
down to 75 MHz. Check with the memory component specifications to verify.

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor 1-7

1.4.6 Communications I/O Subsystem

146.1 DMA Controller

The communications subsystem contains an intelligent DMA unit that provides front line interrupt control
and data movement interface via a separate peripheral bus to the on-chip peripheral functions, leaving the
processor core free to handle higher level activities. This concurrent operation enables a significant boost
in overall system performance.

The communications subsystem can support up to 16 simultaneously enabled DMA tasks, with support for
up to two external DMA requests. It uses internal buffers to prefetch reads and post writes such that
bursting is used whenever possible. This optimizes both internal and external bus activity. The following
communications and computer control peripheral functions are integrated and controlled by the
communications subsystem:

» Up to two 10/100 Mbps fast Ethernet controllers (FECs)

» Optional universal serial bus (USB) version 2.0 device controller

» Up to four programmable serial controllers (PSCs)

« 12C peripheral interface

» DMA serial peripheral interface (DSPI)

1.4.6.2 10/100 Fast Ethernet Controller (FEC)

The FEC supports two standard MAC/PHY interfaces: 10/100 Mbps IEEE 802.3 MII and 10Mbps 7-wire
interface. The controller is full duplex, supports a programmable maximum frame length and
retransmission from the transmit FIFO following a collision.

Support for different Ethernet physical interfaces:
— 100 Mbps IEEE 802.3 MII
— 10 Mbps IEEE 802.3 Ml
— 10 Mbps 7-wire interface
* |EEE 802.3 full-duplex flow control.

» Support for full-duplex operation (200 Mbps throughput) with a minimum system clock frequency
of 50 MHz.

» Support for half duplex operation (100 Mbps throughput) with a minimum system clock frequency
of 25 MHz.

* Retransmit from transmit FIFO following collision.
» Internal loopback for diagnostic purposes.

1.4.6.3 USB 2.0 Device (Universal Serial Bus)

The USB module implementation on the MCF547x product family provides all the logic necessary to
process the USB protocol as defined by version 2.0 specification for peripheral devices. It features the
following:

» High-speed operation up to 480 Mbps, full-speed operation at 12 Mbps, and low-speed operation
at 1.5 Mbps

» Physical interface on chip

* Bulk, interrupt, and isochronous transport modes.

» Six programmable in/out endpoints and one control endpoint

» 4 Kbytes of shared endpoint FIFO RAM and 1 Kbyte of endpoint descriptor RAM

MCF547x Reference Manual, Rev. 5

1-8 Freescale Semiconductor

MCF547x Family Features

1.4.6.4 Programmable Serial Controllers (PSCs)

The MCF547x product family supports four PSCs that can be independently configured to operate in the
following modes:
» Universal asynchronous receiver transmitter (UART) mode
— 5,6,7,8 bits of data plus parity
— Odd, even, none, or force parity
— Stop bit width programmable in 1/16 bit increments
— Parity, framing, and overrun error detection
— Automatic PSCCTS and PSCRTS modem control signals
* IrDA 1.0 SIR mode (SIR)
— Baud rate range of 2400-115200 bps
— Selectable pulse width: either 3/16 of the bit duration or 1.6 us
« IrDA 1.1 MIR mode (MIR)
— Baud rate of 0.576 or 1.152 Mbps
« IrDA 1.1 FIR mode (FIR)
— Baud rate of 4.0 Mbps
* 8-bit soft modem mode (modem8)
» 16-bit soft modem mode (modem16)
* AC97 soft modem mode (AC97)

Each PSC supports synchronous (USART) and asynchronous (UART) protocols. The PSCs can be used to
interface to external full-function modems or external codecs for soft modem support, as well as IrDA 1.1
or 1.0 interfaces. Both 8- and 16-bit data widths are supported. PSCs can be configured to support a
1200-baud plain old telephone system (POTS) modem, V.34 or V.90 protocols. The standard UART
interface supports connection to an external terminal/computer for debug support.

1.4.6.5 I°C (Inter-Integrated Circuit)

The MCF547x product family provides an 1°C two-wire, bidirectional serial bus for on-board
communication. It features the following:

* Multimaster operation with arbitration and collision detection

» Calling address recognition and interrupt generation

» Automatic switching from master to slave on arbitration loss

» Software-selectable acknowledge bit

» Start and stop signal generation and detection

* Bus busy status detection

1.4.6.6 DMA Serial Peripheral Interface (DSPI)

The DSPI block operates as a basic SPI block with FIFOs providing support for external queue operation.
Data to be transmitted and data received reside in separate FIFOs. The FIFOs can be popped and pushed
by host software or by the system DMA controller. The DSPI supports these SPI features:

* Full-duplex, three-wire synchronous transfers

» Master and slave mode—two peripheral chip selects in master mode

* DMA support

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor 1-9

1.47 DDR SDRAM Memory Controller

The DDR SDRAM memory controller is a glueless interface to DDR memories. The module uses a 32-bit
memory port and can address a maximum of 1 Gbyte of data with 16 64M x 8 (512-Mbit) devices, four
per chip select. The controller supplies two clock lines and respective inverted clock lines to help minimize
system complexity when using DDR. The module supports either DDR or SDR, but not both. This is due
to voltage differences between the memory technologies.

The supported memory clock rate is up to 133 MHz. At this memory clock rate, DDR memory can receive
data at an effective rate of up to 266 MHz.

» Support for up to 13 lines of row address, 11 lines of column address, two lines of bank address,
and up to four chip selects

* Memory bus width fixed at 32 bits

» Four chip selects support up to 1 GByte of SDRAM memory

» Support for page mode to maximize the data rate. Page mode remembers active pages for all four
chip selects

e Support for sleep mode and self refresh

e Cache line reads that can use critical word first. These reads can start in the center of a burst and
will wrap to the beginning. This allows the processor quicker access to a needed instruction.

All on-chip bus masters have access to DRAM. This includes PCI, the ColdFire V4e core, the
cryptography accelerator, and the DMA controller.

1.4.8 Peripheral Component Interconnect (PCI)

The PCI controller is a PCI VV2.2-compliant bus controller and arbiter. The PCI bus is capable of 66-MHz
operation with a 32-bit address/data bus and support for five external masters.

The PCI module includes an inbound FIFO to increase performance when using an external bus master.
The bus can address all 4 Gbytes of PCl-addressable space.

The PCI bus is also multiplexed with the flexible local bus (FlexBus) address lines. If 32-bit non-muxed
local address and data is required, it can be obtained at the expense of utilizing the PCI bus.

When implemented, the PCI controller acts as the central resource, bus arbiter, and configuring master on
the PCI bus.

1.4.9 Flexible Local Bus (FlexBus)

The FlexBus module is intended to provide the user with basic functionality required to interface to
peripheral devices. The FlexBus interface is a multiplexed or non-multiplexed bus, with an operating
frequency from 33-66 MHz. The Flexbus is targeted to support external Flash memories, boot ROMs,
gate-array logic, or other simple target interfaces. Up to six chip selects are supported by the FlexBus.

Possible combinations of address and data bits are the following:

* Non-multiplexed 32-bit address and 32-bit data (32-bit address muxed over
PCI bus—PCI not usable)

* Multiplexed 32-bit address and 32-bit data (PCI usable)

* Multiplexed 32-bit address and 16-bit data

» Multiplexed 32-bit address and 8-bit data

MCF547x Reference Manual, Rev. 5

1-10 Freescale Semiconductor

MCF547x Family Features

The non-multiplexed 32-bit address and 32-bit data mode is determined at chip reset. For all other modes,
the full 32-bit address is driven during the address phase. The number of bytes used for data are determined
on a chip select by chip select basis.

1.4.10 Security Encryption Controller (SEC)

As consumers and businesses continue to embrace the Internet, the need for secure point-to-point
communications across what is an entirely insecure network has been met by the development of a range
of standard protocols. Computer cryptography fundamentally involves calculations with very large
numbers. Personal computers have sufficient processing power to implement these algorithms entirely in
software. When placed upon the embedded devices typically used for routing and remote access functions,
this same computational burden can potentially decrease the throughput of a 100 Mbps Ethernet interface
down to 10 Mbps.

Hardware acceleration of common cryptography algorithms is the solution to the computational bandwidth
requirements of Internet security standards. Discrete solutions currently address this problem, but the next
logical step is to integrate a cryptography accelerator on an embedded processor, such as the MCF547x
family.

Freescale has developed the SEC on the MCF547x family for this purpose. This block accelerates the core
cryptography algorithms that underlie standard Internet security protocols like SSL/TLS, IPSec, IKE, and
WTLS/WAP.

e The SEC includes execution units for the following:
— DES/3DES block cipher
— AES block cipher
— RC4 stream cipher
— MD5/SHA-1/SHA-256/HMAC hashing

— Random number generator compliant with FIPS 140-1 standards for randomness and
non-determinism

* Dual-channel architecture permits single-pass encryption and authentication
1.4.11 System Integration Unit (SIV)

1.4.11.1 Timers

The MCF547x family integrates several timer functions required by most embedded systems. Two internal
32-bit slice timers create short cycle periodic interrupts, typically utilized for RTOS scheduling and alarm
functionality. A watchdog timer resets the processor if not regularly serviced, catching software hang-ups.
Four 32-bit general purpose timers can perform input capture, output compare, and PWM functionality.

1.4.11.2 Interrupt Controller

The interrupt controller on the MCF547x family can support up to 63 interrupt sources. The interrupt
controller is organized as seven levels with nine interrupt sources per level. Each interrupt source has a
unique interrupt vector, and 56 of the 63 sources of a given controller provide a programmable level [1-7]
and priority within the level.
» Support for up to 63 interrupt sources organized as follows:
— 56 fully-programmable interrupt sources

— 7 fixed-level interrupt sources

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor 1-11

» Seven external interrupt signals

* Unique vector number for each interrupt source

» Ability to mask any individual interrupt source or all interrupt sources (global mask-all)
» Support for hardware and software interrupt acknowledge (IACK) cycles

» Combinatorial path to provide wake-up from stop mode

1.4.11.3 General Purpose I/O

All peripheral 1/0 pins on the MCF547x family are multiplexed with GPIO, adding flexibility and usability
to all signals on the chip.

MCF547x Reference Manual, Rev. 5

1-12 Freescale Semiconductor

Chapter 2
Signal Descriptions

2.1 Introduction

This chapter describes the MCF547x signals.

NOTE

The terms *assertion’ and ‘negation’ are used to avoid confusion when
dealing with a mixture of active-low and active-high signals. The term
‘asserted’ indicates that a signal is active, independent of the voltage level.
The term “negated’ indicates that a signal is inactive.

Active-low signals, such as RAS and TA, are indicated with an overbar.

2.1.1 Block Diagram
Figure 2-1 displays the signals of the MCF547x.

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor

2-1

— AD[31:24] <—> l«—> EOMDIO / PFECI2C3 7
AD[23:16] <—> l«—> EOMDC / PFECI2C2
AD15:8] <—> l«—> EOTXCLK / PFECOH7
AD[7:0] <—> l<—> EOTXEN / PFECOH6
FBCS[5:1] / PFBCS[5:1] <—> l<—> EOTXDO / PFECOH5
. FBCSO <— l<—> EOCOL / PFECOH4
FlexBus TS/PFBCTLO/ TBST <—>| l<—> EORXCLK / PFECOH3 Ethernet
___RIMW/PFBCTL2/TBST <«——| l<—> EORXDV / PFECOH2 MAC 0
BE/BWE3 / PFBCTL7 / TSIZ1 <—> <—> EORXDO / PFECOH1
__ BE/BWE2/PFBCTL6/ TSIZO <—> <—> EOCRS / PFECOHO
BE/BWEL / PFBCTL5 / FBADDR1 <—> l<—> EOTXD[3:1] / PFECOL[7:5]
BE/BWEO / PFBCTL4 / FBADDRO <—> l<—> EOTXER / PFECOL4
OE / PFBCTL3 <—>| l<—> EORXD[3:1] / PFECOL[3:1]
L TA / PFBCTLL <—> <—> EORXER / PFECOLO |
N l«—> E1IMDIO / SDA 7
SDDATA[31:24] <—> <—> E1IMDC / SCL
SDDATA[23:16] <—> <—> E1TXCLK / PFEC1H7
SDDATA[15:8] <—> <—> E1TXEN/ PFEC1H6
SDDATA[7:0] <—> <—> E1TXDO / PFEC1H5
SDADDR([12:0] <«—— <—> E1COL / PFEC1H4
SDBA[1:0] <——— l«—> E1RXCLK / PFEC1H3 Ethernet
RAS <«—— <—> E1RXDV / PFEC1H2 MAC 1
SDRAM CAS «— <—> E1RXDO/PFEC1H1
Controller SDCS[3:0] <—— l«<—> E1CRS / PFEC1H0
SDDM[3:0] <«——— <<—> E1TXD[3:1]/ PFEC1L[7:5]
SDDQS[3:0] <—> <<—> E1TXER/ PFEC1L4
SDCLK[1:0] <— ~<<—> E1RXD[3:1]/ PFEC1L[3:1]
SDCLK[1:0] <—— <—> E1RXER / PFEC1LO —
SDWE <—— _
SDCKE <— «—> USBD+
SDRDQS <——— «<—> USBD-
L VREF ——>| l«—— USBVBUS USB
<——— USBRBIAS
— PCIAD[31:24] / FBADDR[31:24] <—> <——— USBCLKIN
PCIAD[23:16] / FBADDR[23:16] <—> > USBCLKOUT
PCIAD[15:8] / FBADDR[15:8] <—> -
PCIAD[7:0] / FBADDR[7:0] <—> l«—> SDA/ PFECI2C1] 2c
PCICXBE[3:0] <—> <—> SCL / PFECI2CO
PCIDEVSEL <«—> MCF547x —_— External
PCIFRM <—> < IRQ7/PIRQ7 Interrupts
pCl PCIIRDY <—> l«—> DREQL/PDMAL/TINL/IRQL |
DMA
Controller _PCIPAR <—> <> DREQO / PDMAO / TINO Controller
_PCIPERR <—> ~<—> DACK[1:0] / PDMA[3:2] / TOUT[1:0] _|
PCIRESET <— R -
PCISERR <—> l<—> TIN3/PTIM7 / IRQ3
PCISTOP <—> <—> TOUT3/PTIM6____
PCITRDY <—> l«—> TIN2 / PTIM5 / IRQ2 _
PCIBG4 / PPCIBG4 / TBST <—— <—> TOUT2/ PTIM4 Hmdefl
PCIBG[3:0] / PPCIBG[3:0] / TOUT[3:0] <—> <—> TIN1 odule
PCIBR4 / PPCIBR4 / [RQ4 <—> <—> TOUT1
L PCIBR[3:0] / PPCIBR[3:0] / TIN[3:0] <—> <—> TINO
<—> TOUTO |
— PCSOTXD / PPSC1PSCO00 <— > > PSTCLK 7
PSCORXD / PPSC1PSC01 <—> > PSTDDATA[7:0] Debud &
PSCOCTS / PPSC1PSC02 / PSCOBCLK <—> l«——— DSCLK / TRST v
PSCORTS / PPSC1PSCO03 / PSCOFSYNC <—>| <—— BKPT / TMS Test Port
PSC1TXD / PPSC1PSC04 <—> l«<—— DSI/TDI Control
PSC1RXD / PPSC1PSC05 <—> > DSO/TDO
PSCICTS / PPSC1PSC06 / PSC1BCLK <—> l«— TCK _
PSCs PSCIRTS / PPSC1PSCO07 / PSCIFSYNC <—>| . _
PSC2TXD / PPSC3PSC20 <—> <—— MTMOD[3:0]
PSC2RXD / PPSC3PSC21 <—> <——RSTL Test/
PSC2CTS / PPSC3PSC22 / PSC2BCLK <—> <«—> RSTO Eﬁfcekt &
PSC2RTS / PPSC3PSC23 / PSC2FSYNC <—> <<—— CLKIN
PSC3TXD / PPSC3PSC24 <—> -
PSC3RXD / PPSC3PSC25 <«—> < —
PSC3CTS / PPSC3PSC26 / PSC3BCLK <—>| < ﬁ,VDDDD
L PSC3RTS / PPSC3PSC27 / PSC3FSYNC <—> VSS
| SDVDD
— DSPISOUT / PDSPIO / PSC3TXD <—> I PLLVDD Power
DSPISIN / PDSPI1 / PSC3RXD <—> ——— PLLVSS Supplies
DSPISCK / PDSPI2 / PSC3CTS / PSC3BCLK <—> ——— USB_0OSCVDD
DSPI DSPICS5/PCSS / PDSPI6 <—> ———— USB_PHYVDD
DSPICS3/ PDSPI5 / TOUT3 <—>| ——— USB_OSCAVDD
o DSPICS2 / PDSPI4 / TOUT2 <—> ——— USB_PLLVDD
| DSPICS0/SS / PDSPI3 / PSC3RTS / PSC3FSYNC <—> ——— USBVDD —

Figure 2-1. MCF547x Signals

MCF547x Reference Manual, Rev. 5

2-2 Freescale Semiconductor

Table 2-1 lists the signals for the MCF547x in functional group order.
Table 2-1. MCF547x Signal Description

Introduction

Pin Functions Sl o |goe
PBGA Pin Description mw | = |2 |99
Primary GPIO Secondary Tertiary g |0 |x?
FlexBus
AE2, AF3, AF1, AD[31:24] — — — Multiplexed 110 16 | Hi-Z
AE3, AE4, AD5, address/data bus
AF2, AD4
AD3, AC3, AD2, AD[23:16] — — — Multiplexed 110 16 | Hi-Z
AC2, AA4, AE1, address/data bus
AC1, AD1
AB2, AA3, W4, ADJ[15:8] — — — Multiplexed 110 16 | Hi-Z
AB1, AA2, AA1, address/data bus
Y1,Y2
W3, W1, W2, V3, AD[7:0] — — — Multiplexed 110 16 | Hi-Z
V1, V2, T4, U3 address/data bus
R1,T2,T3,T1,U2 FBCS[5:1] PFBCSI[5:1] — — Chip selects 5-1 O:l/0 24 | High
Ul FBCSO — — — Chip select 0 (0] 24 | High
AD6 ALE PFBCTLO TBST — Address Latch Enable | O:1/O 16 | High
AE5 R/W PFBCTL2 TBST — Read/write O:l/0 16 | Hi-Z
AF4 BE/BWE3 PFBCTL7 TSIZ1 — Byte enables O:l/0 16 | High
AF5 BE/BWE2 PFBCTL6 TSIZ0 — Byte enables O:l/o0 16 | High
AC4 BE/BWE1 PFBCTL5 FBADDR1 — Byte enables O:l/o0 16 | High
AE7 BE/BWEO PFBCTL4 FBADDRO — Byte enables O:l/o0 16 | High
AE6 OE PFBCTL3 — — Output enable o:1/0 16 | High
AF6 TA PFBCTL1 — — Transfer acknowledge | 1:1/O 16 —
SDRAM Controller
C10, B9, A8, D5, | SDDATA[31:24] — — — SDRAM data bus /0 24 | Hi-Z
A6, C8, B7, A5
A4, C7, B6, B4, SDDATA[23:16] — — — SDRAM data bus 110 24 | Hi-Z
C5, B3, C4,D4
E2, D1, G4, E1, SDDATA[15:8] — — — SDRAM data bus 110 24 | Hi-Z
K4, F1, G2, H3
N4, G1, H2, J3, SDDATA[7:0] — — — SDRAM data bus /0 24 | Hi-Z
J1, M4, K3, K2
Al13, A12, D10, SDADDR[12:0] — — — SDRAM address bus | O 24 | Low
B12, C12, A11,
D8, B11, C11,
Al10, D7, B10, A9
MCF547x Reference Manual, Rev. 5
Freescale Semiconductor 2-3

A
Table 2-1. MCF547x Signal Description (Continued)
Pin Functions Sl o |goe
PBGA Pin Description w | Z |2 |48
Primary GPIO Secondary Tertiary g |0 |x?
M2, M3 SDBA[1:0] — — — SDRAM bank (0] 24 | Low
addresses
E3 RAS — — — SDRAM row address | O 24 | High
strobe
Cc2 CAS — — — SDRAM column (0] 24 | High
address strobe
R2, P2, P1, N3 SDCS[3:0] — — — SDRAM chip selects (0] 24 | High
B8, A3, G3, J2 SDDM[3:0] — — — SDRAM write data 24 | High
byte mask
A7, B5, F2, H1 SDDQS[3:0] — — — SDRAM data strobe | /O 24 | High
L1, N1 SDCLK][1:0] — — — SDRAM clock (0] 24 | Low
M1, N2 SDCLK]J1:0] — — — Inverted SDRAM (0] 24 | Low
clock
K1 SDWE — — — SDRAM write enable (0] 24 | Low
E4 SDCKE — — — SDRAM clock enable | O 24 | Low
L2 SDRDQS — — — SDR SDRAM data (0] 24 | Low
strobe
D2 VREF — — — SDRAM reference | — —
voltage
PCI Controller
V25, V26, U25, PCIAD[31:24] — FBADDR[31:24] — PCI address/data bus | 1/O 16 | Hi-Z
U26, T24, T25,
T26, R24
R25, R26, P26, PCIAD[23:16] — FBADDR[23:16] — PCI address/data bus | 1/0O 16 | Hi-Z
P24, P23, P25,
N25, N23
N26, N24, M26, PCIAD[15:8] — FBADDR[15:8] — PCI address/data bus | 1/O 16 | Hi-Z
M25, L26, L25,
K26, K25
J26, K24, J25, PCIADI[7:0] — FBADDR[7:0] — PCI address/data bus | 1/O 16 | Hi-Z
H26, J24, G26,
H25, K23
F26, G25, E26, PCICXBE[3:0] — — — PCI command/byte 1/0 16 | Hi-Z
G24 enables
J23 PCIDEVSEL — — — PCI device select 110 16 | Hi-Z
F25 PCIFRM — — — PCI frame 110 16 | Hi-Z
Cc23 PCIIDSEL — — — PCl initialization | — —

device select

MCF547x Reference Manual, Rev. 5

2-4

Freescale Semiconductor

g |

Table 2-1. MCF547x Signal Description (Continued)

Introduction

Pin Functions o PN
=] o [
PBGA Pin Description mw | = |2 |98
Primary GPIO Secondary Tertiary g |0 |x?
D24 PCIIRDY — — — PCl initiator ready /0 16 | Hi-Z
F23 PCIPAR — — — PCI parity /0 16 | Hi-Z
D26 PCIPERR — — — PCI parity error /0 16 | Hi-Z
G23 PCIRESET — — — PCI reset (0] 16 | Low
F24 PCISERR — — — PCI system error /0 16 | Hi-Z
E25 PCISTOP — — — PCI stop /0 16 | Hi-Z
C26 PCITRDY — — — PCI target ready /0 16 | Hi-Z
w24 PCIBG4 PPCIBG4 TBST — PCI external grant 4 | O:1/O 16 | GPI
Y26, W25, V24, PCIBG[3:0] PPCIBG[3:0] TOUT([3:0] — PCl external grant 3—-0 | O:1/O 16 | GPI
W26
D21 PCIBR4 PPCIBR4 IRQ4 — PCI external /o | Y| 8 GPI
request 4
B24 PCIBR3 PPCIBR3 TIN3 — PCI external /o | yr| 8 GPI
request 3
A25, B23, A24 PCIBR[2:0] PPCIBR[2:0] TIN[2:0] — PCI external 1:1/0 8 GPI
request 2-0
External Interrupts Port
D14 IRQ7 PIRQ7 — — External interrupt I:1/0 — —
request 7
B14, Al4 1RQ[6:5] PIRQI[6:5] — — External interrupt | 1:I/O — | —
request 6-5
Ethernet MAC 0
AF10 EOMDIO PFECI2C3 — — Managementchannel | 1/O 8 GPI
serial data
AD11 EOMDC PFECI2C2 — — Management channel | O:l/O 8 GPI
clock
AF9 EOTXCLK PFECOH7 — — MAC transmit clock | 1:1/O 8 GPI
AE10 EOTXEN PFECOH6 — — MAC transmit enable | O:l/O 8 GPI
AD9 EOTXDO PFECOH5 — — MAC transmit data | O:l/O 8 GPI
AC9 EOCOL PFECOH4 — — MAC collision I:1/0 8 GPI
AD14 EORXCLK PFECOH3 — — MAC receive clock | :I/O 8 GPI
AE14 EORXDV PFECOH2 — — MAC receive enable | I:I/O 8 GPI
AD13 EORXDO PFECOH1 — — MAC receive data I:1/0 8 GPI
AE19 EOCRS PFECOHO — — MAC carrier sense | |:I/O 8 GPI
MCF547x Reference Manual, Rev. 5
Freescale Semiconductor 2-5

A
Table 2-1. MCF547x Signal Description (Continued)
Pin Functions S|lo|ge
PBGA Pin Description mw | = |2 |98
Primary GPIO Secondary Tertiary g |0 |x?
ADS, AC6, AF7 EOTXD[3:1] PFECOL[7:5] — — MAC transmit data | O:1/O 8 | GPI
AE9 EOTXER PFECOL4 — — MAC transmit error | O:1/O 8 GPI
AF11, AF12, EORXD[3:1] PFECOL[3:1] — — MAC receive data | I:/0 8 | GPI
AF13
AC14 EORXER PFECOLO — — MAC receive error I:1/0 8 GPI
Ethernet MAC 1
AE252 E1MDIO — SDA — Management channel | 1/O 8 —
serial data
AD24? E1MDC — SCL — Managementchannel | O 8 —
clock
AE132 E1TXCLK PFEC1H7 — — MAC Transmit clock | 1:/0 | Y1 | 8 GPI
AD252 E1TXEN PFEC1H6 — — MAC Transmit enable | O:/O | Y | 8 GPI
AE122 E1TXDO PFEC1H5 — — MAC Transmit data |O:l/O| Y | 8 GPI
AF8? E1COL PFEC1H4 — — MAC Collision /o | yr| 8 GPI
B222 E1RXCLK PFEC1H3 — — MAC Receive clock | /O | Y | 8 GPI
B252 E1RXDV PFEC1H2 — — MAC Receive enable | /0 | Y | 8 GPI
AF242 E1RXDO PFEC1H1 — — MAC Receive data | 1:I/0 | Y1 | 8 GPI
AC52 E1CRS PFEC1HO — — MAC Carrier sense | /0 | Y1 | 8 GPI
AC82, AC112, E1TXD[3:1] PFECIL[7:5] — — MAC Transmitdata |O:/0| Y1 | 8 | GPI
AE112
AE242 E1TXER PFEC1L4 — — MAC Transmit error |O:I/O| Y | 8 GPI
D252, B262, A26% | E1RXD[3:1] PFEC1L[3:1] — — MAC Receive data | I:1/0 | Y1 | 8 | GPI
AES? E1RXER PFEC1LO — — MAC Receive error | 1:1/0 | Y1 | 8 GPI
uSB
AF163 USBD+ — — — USB differential data | 1/O 24 —
AF173 USBD- — — — USB differential data | 1/O 24 —
AC173 USBVBUS — — — USB Vbus monitor | — —
input
AF18 USBRBIAS — — — USB bias resistor | — —
AF153 USBCLKIN — — — USB crystal input | — —
AF143 USBCLKOUT — — — USB crystal output (0] 24 —
DSPI
Y24 DSPISOUT PDSPIO PSC3TXD — QSPI data out O:1/0 24 | GPI
MCF547x Reference Manual, Rev. 5
2-6 Freescale Semiconductor

A
Introduction
Table 2-1. MCF547x Signal Description (Continued)
Pin Functions S|lo|ge
PBGA Pin Description mw | = |2 |98
Primary GPIO Secondary Tertiary g |0 | x »
AC24 DSPISIN PDSPI1 PSC3RXD — QSPI data in 1:1/0 24 | GPI
AD22 DSPISCK PDSPI2 PSC3CTS PSC3BCLK QSPI clock 110 24 | GPI
w23 DSPICS5/PCSS PDSPI6 — — QSPI chip select | 0:l/O 24 | GPI
V23 DSPICS3 PDSPI5 TOUT3 — QSPI chip select | O:I/O 24 | GPI
AA26 DSPICS2 PDSPI4 TOUT2 — QSPI chip select | 0:/O 24 | GPI
Y25 DSPICS0/SS PDSPI3 PSC3RTS |PSC3FSYNC| QSPI chip select |O:l/O 24 | GPI
1’c
c24 SDA PFECI2C1 — — 12C Serial data I/0 8 | GPI
C25 SCL PFECI2CO — — 12C Serial clock 110 8 | GPI
PSCs
AA25 PSCOTXD PPSC1PSCO00 — — PSCO transmit data | O:1/O 8 | GPI
AC21 PSCORXD PPSC1PSCO01 — — PSCO receive data | 1:1/0 8 | GPI
AE23 PSCOCTS PPSC1PSC03 | PSCOBCLK — PSCO clear to send | I:I/O 8 | GPI
AB26 PSCORTS PPSC1PSC02 | PSCOFSYNC — PSCO request to send | 1/0 8 | GPI
AB25 PSC1TXD PPSC1PSC04 — — PSC1 transmit data | O:1/O 8 | GPI
AE22 PSC1RXD PPSC1PSC05 — — PSC1 receive data | 1:1/0 8 | GPI
AF25 PSCICTS PPSC1PSC07 | PSCI1BCLK — PSC1 clear to send | I:I/O 8 | GPI
Y23 PSCIRTS PPSC1PSC06 | PSC1FSYNC — PSC1 request to send | 1/0 8 | GPI
AC26 PSC2TXD PPSC3PSC20 — — PSC2 transmit data | O:1/O 8 | GPI
AD21 PSC2RXD PPSC3PSC21 — — PSC2 receive data | I:1/0 8 | GPI
AC19 PSC2CTS PPSC3PSC23 | PSC2BCLK — PSC2 clear to send | I:I/O 8 | GPI
AD26 PSC2RTS PPSC3PSC22 | PSC2FSYNC — PSC2 request to send | 1/0 8 | GPI
AE26 PSC3TXD PPSC3PSC24 — — PSC3 transmit data | O:1/O 8 | GPI
AE21 PSC3RXD PPSC3PSC25 — — PSC3 receive data | 1:1/0 8 | GPI
AF23 PSC3CTS PPSC3PSC27 | PSC3BCLK — PSC3 clear to send | I:I/O 8 | GPI
AB23 PSC3RTS PPSC3PSC26 | PSC3FSYNC — PSC3 request to send | 1/0 8 | GPI
DMA Controller
AF19 DREQ1 PDMA1 TIN1 IRQ1 DMA request I:1/0 8 | GPI
AF20 DREQO PDMAO TINO — DMA request 1:I/O 8 | GPI
AC25, AB24 DACK]1:0] PDMA[3:2] TOUTI[1:0] — DMA acknowledge |O:I/O 8 | GPI
MCF547x Reference Manual, Rev. 5
Freescale Semiconductor 2-7

A
Table 2-1. MCF547x Signal Description (Continued)
Pin Functions S|lo|ge
PBGA Pin Description mw | = |2 |98
Primary GPIO Secondary Tertiary g |0 |x?
Timer Module
AD19 TIN3 PTIM7 IRQ3 — Timer input I:/0 8 GPI
AD23 TOUT3 PTIM6 — — Timer output o:llo 8 GPI
AF21 TIN2 PTIM5 IRQ2 — Timer input I:/0 8 GPI
AC22 TOUT2 PTIM4 — — Timer output o:llo 8 GPI
AE20 TIN1 — — — Timer input | 8 GPI
AC23 TOUT1 — — — Timer output 0] 8 GPI
AF22 TINO — — — Timer input | 8 GPI
AF26 TOUTO — — — Timer output 0] 8 GPI
Debug and JTAG Test Port Control
D20 PSTCLK — — — Processor clock o 8 | High
output
A23,B21, D18, | PSTDDATA[7:0] — — — Processor status (0] 8 | High
C20, A22, B20, debug data
A21, B19
C15 DSCLK — TRST — Debug clock / TAP | Y | — —
reset
B15 BKPT — TMS — Breakpoint/TAP test | Y | — —
mode select
Al5 DSl — TDI — Debug data in / TAP | Y | — —
data in
D17 DSO — TDO — Debug data out/ TAP | O 8 | High
data out
Al6 TCK — — — TAP clock I — —
Test, Reset, and Clock
B17, C14, A18, MTMODJ[3:0] — — — Test mode pins | — —
B16
B13 RSTI — — — Reset input | — —
A20 RSTO — — — Reset output 0] 8 Low
Al7 CLKIN — — — Clock input | — —
D15 NC — — — No Connect | — —
AC15 NC — — — No Connect | — —

MCF547x Reference Manual, Rev. 5

2-8 Freescale Semiconductor

should be connected to the appriopriate power rail even is USB is not being used.

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor

2-9

4\
Introduction
Table 2-1. MCF547x Signal Description (Continued)
Pin Functions = T
PBGA Pin Description mw | = |2 |98
Primary GPIO Secondary Tertiary g |0 |x?
Power Supplies
C16, C22, E24, EVDD — — — Positive /O supply | — —
H24, M24, R3,
U24, Y3, AA24,
AB3, AD7, AD10,
AD18
C18, D11, D12, IVDD — — — Positive core supply | — —
D19, D22, H4,
H23, L23, P4,
R23, V4, AA23,
AC12, AC20
A2, B2, C3, C17, VSS — — Ground
C19,C21, D6, D9,
D13, D16, D23,
E23, F4, J4, L4,
L11-1L16, L24,
M11-M16, M23,
N11-N16,
P11-P16, R4,
R11-R16,
T11-T16, T23,
U4,U23,Y4, AB4,
AC7, AC10,
AC18, AD12,
AD17, AD20,
AE15-AE17
Al, B1, C1, C6, SDVDD — — — Positive SDRAM
C9, C13, D3, F3, supply
L3, P3
Al19 PLLVDD — — — Positive PLL analog
supply
B18 PLLVSS — — — PLL ground
AC13* USB_OSCVDD — — — USB oscillator supply
AC16% USB_PHYVDD — — — USB PHY supply
AD15% USB_OSCAVDD — — — USB oscillator analog
supply
AD16% USB_PLLVDD — — — USB PLL supply
AE18% USBVDD — — — USB supply
1 Pull-up resistor when configured for general purpose input (default state after reset).
2 This pin is a “no connect” on the MCF5473 and MCF5472 devices.
3 This pin is a “no connect” on the MCF5471 and MCF5470 devices.
4

This pin is a “no connect” on the MCF5471 and MCF5470 devices. On MCF5475, MCF5474, MCF5473, and MCF5472 device the pin

Table 2-2 lists the MCF547x signals in pin number order for the 388 PBGA package.
Table 2-2. MCF5475/MCF5474 Signal Description by Pin Number

-DE_ Pin Functions 'nE. Pin Functions

< <

% Primary GPIO Secondary | Tertiary % Primary GPIO Secondary Tertiary
Al SDVDD — — — P1 SDCS1 — — _
A2 VSS — — — P2 SDCS2 — — —
A3 SDDM2 — — — P3 SDVDD — — _
A4 | SDDATA23 — — — P4 IVDD — — _
A5 | SDDATA24 — — — P11 VSS — — —
A6 | SDDATA27 — — — P12 VSS — — —
A7 | SDDQS3 — — — P13 VSS — — —
A8 | SDDATA29 — — — P14 VSS — — _
A9 | SDADDRO — — — P15 VSS — — —
A10 | SDADDR3 — — — P16 VSS — — —
All | SDADDR? — — — P23 PCIAD19 — FBADDR19 —
Al2 | SDADDR11 — — — P24 PCIAD20 — FBADDR20 —
Al13 | SDADDR12 — — — P25 PCIAD18 — FBADDR18 —
Al4 IRQ5 PIRQ5 — — P26 PCIAD21 — FBADDR21 —
A15 DSl — TDI — R1 FBCS5 PFBCS5 — —
A16 TCK — — — R2 SDCS3 — — —
Al7 CLKIN — — — R3 EVDD — — _
A18 | MTMOD1 — — — R4 VSS — — —
A19 | PLLVDD — — — R11 VSS — — —
A20 RSTO — — — R12 VSS — — —
A21 | PSTDDATAL — — — R13 VSS — — —
A22 | PSTDDATA3 — — — R14 VSS — — —
A23 | PSTDDATA7 — — — R15 VSS — — —
A24 | PCIBRO | PPCIBRO TINO — R16 VSS — — —
A25 | PCIBR2 | PPCIBR2 TIN2 — R23 IVDD — — —
A26'| EIRXD1 | PFECIL5 — — R24 PCIAD24 — FBADDR24 —
B1 SDVDD — — — R25 PCIAD23 — FBADDR23 —
B2 VSS — — — R26 PCIAD22 — FBADDR22 —
B3 | SDDATA18 — — — T1 FBCS2 PFBCS2 — —
B4 | SDDATA20 — — — T2 FBCS4 PFBCS4 — —

MCF547x Reference Manual, Rev. 5

2-10

Freescale Semiconductor

A
Introduction
Table 2-2. MCF5475/MCF5474 Signal Description by Pin Number (Continued)

= Pin Functions = Pin Functions

< <

% Primary GPIO Secondary | Tertiary % Primary GPIO Secondary Tertiary
B5 SDDQS2 — — — T3 FBCS3 PFBCS3 — —
B6 SDDATA21 — — — T4 AD1 — — —
B7 SDDATA25 — — — T11 VSS — — —
B8 SDDM3 — — — T12 VSS — — —
B9 SDDATA30 — — — T13 VSS — — —
B10 | SDADDR1 — — — T14 VSS — — —
B11 | SDADDRS5 — — — T15 VSS — — —
B12 | SDADDR9 — — — T16 VSS — — —
B13 RSTI — — — T23 VSS — — —
B14 IRQ6 PIRQ6 — — T24 PCIAD27 — FBADDR27 —
B15 BKPT — T™MS — T25 PCIAD26 — FBADDR26 —
B16 MTMODO — — — T26 PCIAD25 — FBADDR25 —
B17 | MTMOD3 — — — U1 FBCSO — — —
B18 | PLLVSS — — — u2 FBCS1 PFBCS1 — —
B19 | PSTDDATAO — — — U3 ADO — — —
B20 | PSTDDATA2 — — — U4 VSS — — —
B21 | PSTDDATAG6 — — — u23 VSS — — —
B221| E1RXCLK | PFEC1H3 — — u24 EVDD — — —
B23 PCIBR1 PPCIBR1 TIN1 — u25 PCIAD29 — FBADDR29 —
B24 PCIBR3 PPCIBR3 TIN3 — U26 PCIAD28 — FBADDR28 —
B25! E1RXDV PFEC1H2 — — V1 AD3 — — —
B261 E1RXD2 PFEC1L2 — — V2 AD2 — — —
C1l SDvDD — — — V3 AD4 — — —
c2 CAS — — — V23 IVDD — — —
C3 VSS — — — V23 DSPICS3 PDSPI5 TOUT3 —
C4 | SDDATA17 — — — V24 PCIBG1 PPCIBG1 TOUT1 —
C5 SDDATA19 — — — V25 PCIAD31 — FBADDR31 —
C6 SDvDD — — — V26 PCIAD30 — FBADDR30 —
Cc7 SDDATA22 — — — W1 AD6 — — —
C8 SDDATA26 — — — w2 AD5 — — —
c9 SDvVDD — — — W3 AD7 — — —

MCF547x Reference Manual, Rev. 5
Freescale Semiconductor 2-11

A

Table 2-2. MCF5475/MCF5474 Signal Description by Pin Number (Continued)
'nE_ Pin Functions 'nE. Pin Functions
< <
% Primary GPIO Secondary | Tertiary % Primary GPIO Secondary Tertiary
C10 | SDDATA31 — — — w4 AD13 — — —
Cl1l | SDADDR4 — — — W23 | DSPICS5/PCSS PDSPI6 — —
C12 | SDADDRS — — — w24 PCIBG4 PPCIBG4 TBST —
C13 SDVDD — — — W25 PCIBG2 PPCIBG2 TOUT2 —
Cl14 | MTMOD2 — — — W26 PCIBGO PPCIBGO TOUTO —
C15 DSCLK — TRST — Y1 AD9 — — —
C16 EVDD — — — Y2 ADS — — —
c17 VSS — — — Y3 EVDD — — —
c18 IVDD — — — Y4 VSS — — —
C19 VSS — — — Y23 PSCIRTS |PPSC1PSCO06 | PSC1FSYNC —
C20 | PSTDDATA4 — — — Y24 DSPISOUT PDSPIO PSC3TXD —
c21 VSS — — — Y25 | DSPICS0/SS PDSPI3 — —
Cc22 EVDD — — — Y26 PCIBG3 PPCIBG3 TOUT3 —
C23 | PCIIDSEL — — — AAL AD10 — — —
C24 SDA PFECI2C1 — — AA2 AD11 — — —
C25 SCL PFECI2CO — — AA3 AD14 — — —
C26 | PCITRDY — — — AA4 AD19 — — —
D1 | SDDATA14 — — — AA23 IVDD — — —
D2 VREF — — — AA24 EVDD — — —
D3 SDVDD — — — AA25 PCSOTXD |PPSC1PSCO00 — —
D4 | SDDATA16 — — — AA26 DSPICS2 PDSPI4 TOUT2 —
D5 | SDDATA28 — — — AB1 AD12 — — —
D6 VSS — — — AB2 AD15 — — —
D7 | SDADDR2 — — — AB3 EVDD — — —
D8 | SDADDR6 — — — AB4 VSS — — —
D9 VSS — — — AB23 PSC3RTS |PPSC3PSC26 | PSC3FSYNC —
D10 | SDADDR10 — — — AB24 DACKO PDMA2 TOUTO —
D11 IVDD — — — AB25 PSC1TXD |PPSC1PSC04 — —
D12 IVDD — — — AB26 PSCORTS PPSC1PSC02 | PSCOFSYNC —
D13 VSS — — — AC1 AD17 — — —
D14 IRQ7 PIRQ7 — — AC2 AD20 — — —

MCF547x Reference Manual, Rev. 5

2-12

Freescale Semiconductor

A
Introduction
Table 2-2. MCF5475/MCF5474 Signal Description by Pin Number (Continued)

= Pin Functions = Pin Functions

< <

% Primary GPIO Secondary | Tertiary % Primary GPIO Secondary Tertiary
D15 NC — — — AC3 AD22 — — —
D16 VSS — — — AC4 BE/BWE1 PFBCTL5 FBADDR1 —
D17 DSO — TDO — AC5t EICRS PFEC1HO — —
D18 | PSTDDATA5 — — — AC6 EOTXD2 PFECOL6 — —
D19 IVDD — — — AC7 VSS — — —
D20 | PSTCLK — — — ACg! E1TXD3 PFEC1LY7 — —
D21 | PCIBR4 PPCIBR4 IRQ4 — AC9 EOCOL PFECOH4 — —
D22 IVDD — — — AC10 VSS — — —
D23 VSS — — — Ac11t E1TXD2 PFEC1L6 — —
D24 | PCIIRDY — — — AC12 IVDD — — —
D25'| E1RXD3 | PFEC1L3 — — AC13? | USB_OSCVDD — — —
D26 | PCIPERR — — — AC14 EORXER PFECOLO — —
El | SDDATA12 — — — AC15 NC — — —
E2 | SDDATA15 — — — AC16°| USB_PHYVDD — — —
E3 RAS — — — AC17%| USBVBUS — — —
E4 SDCKE — — — AC18 VSS — — —
E23 VSS — — — AC19 PSC2CTS |PPSC3PSC23| PSC2BCLK —
E24 EVDD — — — AC20 IVDD — — —
E25 | PCISTOP — — — AC21 PSCORXD |PPSC1PSCO01 — —
E26 | PCICXBE1 — — — AC22 TOUT2 PTIM4 — —
F1 | SDDATA10 — — — AC23 TOUT1 — — —
F2 | SDDQS1 — — — AC24 DSPISIN PDSPI1 PSC3RXD —
F3 SDVDD — — — AC25 DACK1 PDMA3 TOUT1 —
F4 VSS — — — AC26 PSC2TXD | PPSC3PSC20 — —
F23 | PCIPAR — — — AD1 AD16 — — —
F24 | PCISERR — — — AD2 AD21 — — —
F25 | PCIFRM — — — AD3 AD23 — — —
F26 | PCICXBE3 — — — AD4 AD24 — — —
Gl | SDDATA6 — — — AD5 AD26 — — —
G2 | SDDATA9 — — — AD6 ALE PFBCTLO TBST —
G3 SDDM1 — — — AD7 EVDD — — —

MCF547x Reference Manual, Rev. 5
Freescale Semiconductor 2-13

A

Table 2-2. MCF5475/MCF5474 Signal Description by Pin Number (Continued)
= Pin Functions = Pin Functions
< <
% Primary GPIO Secondary | Tertiary % Primary GPIO Secondary Tertiary
G4 | SDDATA13 — — — ADS8 EOTXD3 PFECOL7 — —
G23 | PCIRESET — — — AD9 EOTXDO PFECOH5 — —
G24 | PCICXBEO — — — AD10 EVDD — — —
G25 | PCICXBE2 — — — AD11 EOMDC PFECI2C2 — —
G26 | PCIAD2 — FBADDR2 — AD12 VSS — — —
H1 | SDDQSO0 — — — AD13 EORXDO PFECOH1 — —
H2 | SDDATA5 — — — AD14 EORXLK PFECOH3 — —
H3 | SDDATAS — — — AD15% | USB_OSCAVDD — — —
H4 IVDD — — — AD16°| USB_PLLVDD — — —
H23 IVDD — — — AD17 VSS — — —
H24 EVDD — — — AD18 EVDD — — —
H25 | PCIAD1 — FBADDR1 — AD19 TIN3 PTIM7 IRQ3 CANRX1
H26 | PCIAD4 — FBADDR4 — AD20 VSS — — —
J1 | SDDATA3 — — — AD21 PSC2RXD |PPSC3PSC21 — —
J2 SDDMO — — — AD22 DSPISCK PDSPI2 PSC3CTS | PSC3BCLK
J3 | SDDATA4 — — — AD23 TOUT3 PTIM6 — —
J4 VSS — — — AD24! E1IMDC — SCL —
J23 | PCIDEVSEL — — — AD25t E1TXEN PFEC1H6 — —
J24 PCIAD3 — FBADDR3 — AD26 PSC2RTS PPSC3PSC22 | PSC2FSYNC —
J25 | PCIAD5 — FBADDR5 — AE1 AD18 — — —
J26 | PCIAD7 — FBADDRY — AE2 AD31 — — —
K1 SDWE — — — AE3 AD28 — — —
K2 | SDDATAO — — — AE4 AD27 — — —
K3 | SDDATAl — — — AES5 R/W PFBCTL2 TBST —
K4 | SDDATA11l — — — AE6 OE PFBCTL3 — —
K23 PCIADO — FBADDRO — AE7 BE/BWEO PFBCTL4 FBADDRO —
K24 | PCIAD6 — FBADDR6 — AEg! E1IRXER PFEC1LO — —
K25 | PCIADS — FBADDRS — AE9 EOTXER PFECOL4 — —
K26 | PCIAD9 — FBADDR9 — AE10 EOTXEN PFECOH6 — —
L1 SDCLK1 — — — AE11! E1TXD1 PFEC1L5 — —
L2 | SDRDQS — — — AE12! E1TXDO PFEC1h5 — —

MCF547x Reference Manual, Rev. 5

2-14

Freescale Semiconductor

A
Introduction
Table 2-2. MCF5475/MCF5474 Signal Description by Pin Number (Continued)
= Pin Functions = Pin Functions
< <
% Primary GPIO Secondary | Tertiary % Primary GPIO Secondary Tertiary
L3 SDVDD — — — AE13! E1TXCLK PFEC1H7 — —
L4 VSS — — — AE14 EORXDV PFEC1H2 — —
L11 VSS — — — AE15 VSS — — —
L12 VSS — — — AE16 VSS — — —
L13 VSS — — — AE17 VSS — — —
L14 VSS — — — AE182 USBVDD — — —
L15 VSS — — — AE19 EOCRS PFECOHO — —
L16 VSS — — — AE20 TINL — — —
L23 IVDD — — — AE21 PSC3RXD |PPSC3PSC25 — —
L24 VSS — — — AE22 PSCIRXD |PPSC1PSCO05 — —
L25 | PCIAD10 — FBADDR10 — AE23 PSCOCTS |PPSC1PSCO03| PSCOBCLK —
L26 | PCIAD11 — FBADDR11 — AE241 E1TXER PFEC1L4 — —
M1 | SDCLK1 — — — AE25! E1IMDIO — SCL —
M2 SDBA1 — — — AE26 PSC3TXD |PPSC3PSC24 — —
M3 SDBAO — — — AF1 AD29 — — —
M4 | SDDATA2 — — — AF2 AD25 — — —
M11 VSS — — — AF3 AD30 — — —
M12 VSS — — — AF4 BE/BWE3 PFBCTL7 TSIZ1 —
M13 VSS — — — AF5 BE/BWE2 PFBCTL6 TSIZ0 —
M14 VSS — — — AF6 TA PFBCTL1 — —
M15 VSS — — — AF7 EOTXD1 PFECOL5 — —
M16 VSS — — — AFg! E1COL PFEC1H4 — —
M23 VSS — — — AF9 EOTXCLK PFECOH7 — —
M24 EVDD — — — AF10 EOMDIO PFECI2C3 — —
M25 | PCIAD12 — FBADDR12 — AF11 EORXD3 PFECOL3 — —
M26 | PCIAD13 — FBADDR13 — AF12 EORXD2 PFECOL2 — —
N1 | SDCLKO — — — AF13 EORXD1 PFECOL1 — —
N2 SDCLKO — — — AF14% | USBCLKOUT — — —
N3 SDCSO0 — — — AF15% | USBCLKIN — — —
N4 | SDDATA7 — — — AF16° USBD+ — — —
N11 VSS — — — AF173 USBD- — — —
MCF547x Reference Manual, Rev. 5
Freescale Semiconductor 2-15

A

Table 2-2. MCF5475/MCF5474 Signal Description by Pin Number (Continued)
= Pin Functions = Pin Functions
< <
% Primary GPIO Secondary | Tertiary % Primary GPIO Secondary Tertiary
N12 VSS — — — AF18 USBRBIAS — — —
N13 VSS — — — AF19 DREQ1 PDMA1 TIN1 IRQ1
N14 VSS — — — AF20 DREQO PDMAO TINO —
N15 VSS — — — AF21 TIN2 PTIM5 IRQ2 —
N16 VSS — — — AF22 TINO — — —
N23 | PCIAD16 — FBADDR16 — AF23 PSC3CTS PPSC3PSC27| PSC3BCLK —
N24 | PCIAD14 — FBADDR14 — AF241 E1RXDO PFEC1H1 — —
N25 | PCIAD17 — FBADDR17 — AF25 PSCICTS PPSC1PSC07 | PSC1BCLK —
N26 | PCIAD15 — FBADDR15 — AF26 TOUTO — — —

1 This pin is a “no connect” on the MCF5473 and MCF5472 devices.

2 This pin is a “no connect” on the MCF5471 and MCF5470 devices. On MCF5475, MCF5474, MCF5473, and MCF5472 device the pin
should be connected to the appriopriate power rail even is USB is not being used.

3 This pin is a “no connect” on the MCF5471 and MCF5470 devices.

2.2 MCF547x External Signals

2.2.1 FlexBus Signals

2.2.1.1 Address/Data Bus (AD[31:0])

The AD[31:0] bus carries address and data. The full 32-bit address is always driven on the first clock of a
bus cycle (address phase). The number of bytes used for data during the data phase is determined by the
port size associated with the matching chip select.

2.2.1.2 Chip Select (FBCS[5:0])

FBCS[5:0] are asserted to indicate which device is being selected. A particular chip select asserts when
the transfer address is within the device’s address space as defined in the base and mask address registers.
Each chip select can be programmed for a base address location, masking addresses, port size,
burst-capability indication, wait-state generation, and internal/external termination.

Reset clears all chip select programming; FBCSO is the only chip select initialized out of reset. FBCSO is
also unique because it can function at reset as a global chip select that allows boot ROM to be selected at
any defined address space. Port size and termination (internal vs. external) for boot FBCSO are configured
by the levels on AD[2:0] on the rising edge of RSTI, as described in Section 2.2.6, “Reset Configuration
Pins.”

MCF547x Reference Manual, Rev. 5

2-16 Freescale Semiconductor

MCF547x External Signals

2.2.1.3 Address Latch Enable (ALE)

The assertion of ALE indicates that the MCF547x has begun a bus transaction and that the address and
attributes are valid. ALE is asserted for one bus clock cycle. In multiplexed bus mode, ALE is used
externally as an address latch enable to capture the address phase of the bus transfer.

2.2.1.4 Read/Write (R/W)

The MCF547x drives the R/W signal to indicate the direction of the current bus operation. It is driven high
during read bus cycles and driven low during write bus cycles.

2.2.1.5 Transfer Burst (TBST)

Transfer burst indicates that a burst transfer is in progress. A burst transfer can be 2 to 16 beats depending
on the size of the transfer and the port size.

2.2.1.6 Transfer Size (TSIZ[1:0])

For memory accesses, these signals along with TBST, indicate the data transfer size of the current bus
operation. The FlexBus interface supports byte, word, and longword operand transfers and allows accesses
to 8-, 16-, and 32-bit data ports.

For misaligned transfers, TSIZ[1:0] indicates the size of each transfer. For example, if a longword access
through a 32-bit port device occurs at a misaligned offset of Ox1, a byte is transferred first (TS1Z[1:0] =
01), aword is next transferred at offset 0x2 (TS1Z[1:0] = 10), then the final byte is transferred at offset Ox4
(TSIZ[1:0] = 01).

For aligned transfers larger than the port size, TSI1Z[1:0] behaves as follows:

» If bursting is used, TSIZ[1:0] is driven to the size of transfer.
» If bursting is inhibited, TSIZ[1:0] first shows the size of the entire transfer and then shows the port

size.
Table 2-3. Data Transfer Size
TSIZ[1:0] Transfer Size
00 4 bytes (longword)
01 1 byte
10 2 bytes (word)
11 16 bytes (line)

For burst-inhibited transfers, TSIZ[1:0] changes with each ALE assertion to reflect the next transfer size.
For transfers to port sizes smaller than the transfer size, TSIZ[1:0] indicates the size of the entire transfer
on the first access and the size of the current port transfer on subsequent transfers. For example, for a
longword write to an 8-bit port, TSIZ[1:0] = 2’b00 for the first transaction and 2’b01 for the next three
transactions. If bursting is used and in the case of longword write to an 8-bit port, TSI1Z[1:0] is driven to
2°b00 for the entire transfer.

2.2.1.7 Byte Selects (BE/BWE[3:0])

The four byte-enables are multiplexed with the byte-write-enable signals. Each pin can be individually
programmed through the chip select control registers (CSCRs). For each chip select, assertion of

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor 2-17

byte-enables for reads and byte-write enables for write cycles can be programmed. Alternatively, users can
program byte-write enables to assert on writes and byte-enable to not assert on reads.

The byte strobe (BE/BWE[3:0]) outputs indicate that data is to be latched or driven onto a byte of the data.
BE/BWE[3:0] signals are asserted only to the memory bytes used during a read or write access.

2.2.1.8 Output Enable (OE)

The output enable signal is sent to the interfacing memory and/or peripheral to enable a read transfer. OE
is asserted only when a chip select matches the current address decode.

2.2.1.9 Transfer Acknowledge (TA)

The external system drives this input to terminate the bus transfer. For write cycles, the processor continues
to drive data at least one clock after FBCSx is negated. During read cycles, the peripheral must continue
to drive data until TA is recognized. The number_of wait states is determined either by an internally
programmed auto acknowledgement or the external TA input. If the external TA is used, the peripheral has
total control over the number of wait states.

2.2.2 SDRAM Controller Signals

These signals are used for SDRAM accesses.

2.2.2.1 SDRAM Data Bus (SDDATA[31:0])

SDDATA[31:0] is the bidirectional, non-multiplexed data bus used for SDRAM accesses. Data is sampled
by the MCF547x on the rising edge of SDCLK when in SDR mode, and on both the rising and falling edge
of SDCLK when in DDR mode.

2.2.2.2 SDRAM Address Bus (SDADDR[12:0])

The SDADDR[12:0] signals are the 13-bit address bus used for multiplexed row and column addresses
during SDRAM bus cycles. The address multiplexing supports up to 256 Mbits of SDRAM per chip select.

2.2.2.3 SDRAM Bank Addresses (SDBA[1:0])

Each SDRAM module has four internal row banks. The SDBA[1:0] signals are used to select the row bank.
It is also used to select the SDRAM internal mode register during power-up initialization.

2.2.2.4 SDRAM Row Address Strobe (RAS)
This output is the SDRAM synchronous row address strobe.

2.2.2.5 SDRAM Column Address Strobe (CAS)

This output is the SDRAM synchronous column address strobe.

2.2.2.6 SDRAM Chip Selects (SDCS[3:0])

These signals interface to the chip select lines of the SDRAMSs within a memory block. Thus, there is one
SDCS line for each memory block (the MCF547x supports up to four SDRAM memory blocks).

MCF547x Reference Manual, Rev. 5

2-18 Freescale Semiconductor

MCF547x External Signals

2.2.2.7 SDRAM Write Data Byte Mask (SDDM[3:0])

These output signals are sampled by the SDRAM on both edges of SDDQS to determine which byte lanes
of the SDRAM data bus should be latched during a write cycle. In DDR mode, these bits are ignored during
read operations.

2.2.2.8 SDRAM Data Strobe (SDDQS[3:0])

These bidirectional signals indicate when valid data is on the SDRAM data bus when in DDR mode.

2.2.2.9 SDRAM Clock (SDCLK][1:0])
These signals are the output clock for SDRAM cycles.

2.2.2.10 Inverted SDRAM Clock (SDCLK[1:0])

These signals are the inverted version of the SDRAM clock. They are used with SDCLK to provide the
differential clocks for DDR SDRAM.

2.2.2.11 SDRAM Write Enable (SDWE)

The SDRAM write enable (SDWE) is asserted to signify that an SDRAM write cycle is underway. A read
cycle is indicated by the negation of SDWE.

2.2.2.12 SDRAM Clock Enable (SDCKE)

This output is the SDRAM clock enable. SDCKE is negated to put the SDRAM into low-power,
self-refresh mode.

2.2.2.13 SDR SDRAM Data Strobe (SDRDQS)
This signal is connected to SDDQS inputs. It is used in SDR mode only.

2.2.2.14 SDRAM Reference Voltage (VREF)
This is the input reference voltage for differential SSTL_2 inputs. It is used in both DDR and SDR modes.

2.2.3 PCI Controller Signals

2.2.3.1 PCIl Address/Data Bus (PCIAD[31:0])

The PCIAD[31:0] lines are a time-multiplexed address data bus. The address is presented on the bus during
the address phase while the data is presented on the bus during one or more data phases.

If the FlexBus is used in 32-bit address or 32-bit data non-multiplexed mode, PCIAD[31:0] are used as a
32-bit address for FlexBus transfers.

2.2.3.2 Command/Byte Enables (PCICXBE[3:0])

The PCICXBE[3:0] lines are time-multiplexed. The PCI command is presented during the address phase,
and the byte enables are presented during the data phase.

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor 2-19

2.2.3.3 Device Select (PCIDEVSEL)

The PCIDEVSEL signal is asserted active low when the MCF547x decodes that it is the target of a PCI
transaction from the address presented on the PCI bus during the address phase.

2.2.3.4 Frame (PCIFRM)

The PCIFRM signal is asserted by a PCI initiator to indicate the beginning of a transaction. It is negated
when the initiator is ready to complete the final data phase.

2.2.3.5 Initialization Device Select (PCIIDSEL)

The PCIIDSEL signal is asserted during a PCI type-0 configuration cycle to address the PCI configuration
header.

2.2.3.6 Initiator Ready (PCIIRDY)

The PCIIRDY signal is asserted to indicate that the PCI initiator is ready to transfer data. During a write
operation, assertion indicates that the master is driving valid data on the bus. During a read operation,
assertion indicates that the master is ready to accept data.

2.2.3.7 Parity (PCIPAR)
The PCIPAR signal indicates the parity of data on the PCIAD[31:0] and PCICXBE[3:0] lines.

2.2.3.8 Parity Error (PCIPERR)

The PCIPERR signal is asserted when a data phase parity error is detected if enabled.

2.2.3.9 Reset (PCIRESET)

The PCIRESET signal is asserted active low by MCF547x to reset the PCI bus. This signal is asserted after
the MCF547x is reset and must be negated to enable usage of the PCI bus.

2.2.3.10 System Error (PCISERR)

The PCISERR signal, if enabled, is asserted when an address phase parity error is detected.

2.2.3.11 Stop (PCISTOP)

The PCISTOP signal is asserted by the currently addressed target to indicate that it wishes to stop the
current transaction.

2.2.3.12 Target Ready (PCITRDY)

The PCITRDY signal is asserted by the currently addressed target to indicate that it is ready to complete
the current data phase.

MCF547x Reference Manual, Rev. 5

2-20 Freescale Semiconductor

MCF547x External Signals

2.2.3.13 External Bus Grant (PCIBG[4:1])

The PCIBG signal is asserted to an external master to give it control of the PCI bus. If the internal PCI
arbiter is enabled, it asserts one of the PCIBG[4:1] lines to grant ownership of the PCI bus to an external
master. When the PCI arbiter module is disabled, PCIBG[4:1] is driven high and should be ignored.

2.2.3.14 External Bus Grant/Request Output (PCIBGO/PCIREQOUT)

The PCIBGO signal is asserted to external master device 0 to give it control of the PCI bus. When the PCI
arbiter module is disabled, the signal operates as the PCIREQOUT output. It is asserted when the
MCF547x needs to initiate a PCI transaction.

2.2.3.15 External Bus Request (PCIBR[4:0])

The PCIBR signal is asserted by an external PCI master when it requires access to the PCI bus.

2.2.3.16 External Request/Grant Input (PCIBRO/PCIGNTIN)

The PCIBRO signal is asserted by external PCI master device O when it requires access to the PCI bus.
When the internal PCI arbiter module is disabled, this signal is used as a grant input for the PCI bus,
PCIGNTIN. It is driven by an external PCI arbiter.

2.2.4 Interrupt Control Signals

The interrupt control signals supply the external interrupt level to the MCF547x device.

2.2.4.1 Interrupt Request (IRQ[7:1])
The IRQ[7:1] signals are the external interrupt inputs.

2.2.5 Clock and Reset Signhals

The clock and reset signals configure the MCF547x and provide interface signals to the external system.

2.25.1 ResetIn (RSTI)

Asserting RSTI causes the MCF547x to enter reset exception processing. RSTO is asserted automatically
when RSTI is asserted.

2.2.5.2 Reset Out (RSTO)

After RSTI is asserted, the PLL temporarily loses its lock, during which time RSTO is asserted. When the
PLL regains its lock, RSTO negates again. This signal can be used to reset external devices.

2.2.5.3 Clock In (CLKIN)

CLKIN is the MCF547x input clock frequency to the on-board, phase-locked loop (PLL) clock generator.
CLKIN is used to internally clock or sequence the MCF547x internal bus interface at a selected multiple
of the input frequency used for internal module logic.

CLKIN is used as the clock reference for PCI and FlexBus transfers.

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor 2-21

2.2.6 Reset Configuration Pins
This section describes address/data pins, AD[12:0], that are read at reset to configure the MCF547x.

2.2.6.1 AD[12:8]—CLKIN to SDCLK Ratio (CLKCONFIG[4:0])

The clock configuration inputs, CLKCONFIGJ[4:0], indicate the CLKIN to SDCLK ratio. CLKIN is used
as the external reference for both PCI and FlexBus cycles. The CLKIN to SDCLK ratio is selectable, where
SDCLK is the clock frequency used for SDRAM accesses and the internal XLB bus. The core is always
clocked at twice the SDCLK frequency.

These signals are sampled on the rising edge of RSTI. Table 2-4 shows how the logic levels of AD[12:8]
correspond to the selected clock ratio.

Table 2-4. MCF547x Divide Ratio Encodings

Clock CLKIN-PCI and Internal XLB, SDRAM bus, Core Erequenc
AD[12:8]1 Ratio FlexBus Frequency and PSTCLK Frequency Range ?MHz)y
Range (MHz) Range (MHz) 9
00011 1:2 41.67-66.66 83.33-133.33 166.66—266.66
00101 1:2 25.0-44.42 50.0-88.832 100.0-177.66
01111 1:4 25.0-33.3 100-133.33 200-266.66

1 All other values of AD[12:8] are reserved.

2 Note that DDR memories typically have a minimum speed of 83 MHz. Some vendors specifiy down to
75 MHz. Check with the memory component specifications to verify.

Figure 2-2 correlates CLKIN, internal bus, and core clock frequenciesi for the 2x—4x multipliers.

CLKIN Internal Clock Core Clock
o] o] |
25.0 66.66 50.0 133.33 100.0 266.66
B« < >]
25.033.33 100.0 133.33 200.0 266.66
25 50 70 30 50 70 90 110 130 60 80 100 120 140 160 180 200 220 240 260

CLKIN (MHz) Internal Clock (MHz) Core Clock (MHz)

Figure 2-2. CLKIN, Internal Bus, and Core Clock Ratios

2.2.6.2 AD5—FlexBus Size Configuration (FBSIZE)

At reset, the enabling and disabling of BE/BWE[3:0] versus TSI1Z[1:0] and ADDRJ[1:0] is determined by
the logic level driven on AD5 at the rising edge of RSTI. FBSIZE is multiplexed with AD5 and sampled
only at reset. Table 2-5 shows how the AD5 logic level corresponds to the BE/BWE[3:0] function.

MCF547x Reference Manual, Rev. 5

2-22 Freescale Semiconductor

MCF547x External Signals

Table 2-5. AD5/FBSIZE Selection of BE/BWE[3:0] Signals

AD5 FlexBus Byte Enable Mode
0 BE/BWEJ[3:0] used as byte/byte write
enables.
1 BE/BWE[3:2] configured as TSIZ[1:0].
BE/BWE[1:0] configured as FBADDR([1:0].

2.2.6.3 AD4—32-bit FlexBus Configuration (FBMODE)

During reset, the FlexBus can be configured to operate in a non-multiplexed 32-bit address with 32-bit data
mode. In this mode, the 32-bit FlexBus AD[31:0] is used for the data bus, and the PCI bus PCIAD[31:0]
is used as the address bus. The FlexBus operating mode is determined by the logic level driven on AD4 at
the rising edge of RSTI. Table 2-6 shows how the logic level of AD4 corresponds to the FlexBus mode.

Table 2-6. AD4/FBMODE Selection of Non-Multiplexed
32-bit Address/32-bit Data Mode

AD4 FlexBus Operating Mode

0 ADI[31:0] used for data.
PCIAD[31:0] used for address?®

1 PCIAD[31:0] used for PCI bus.
ADJ[31:0] used for both address and data.

1 If the non-multiplexed 32-bit address/32-bit data mode is selected, the PCI bus
cannot be used.

2.2.6.4 AD3—Byte Enable Configuration (BECONFIG)

The default byte enable mode of the boot FBCSO is determined by the logic level driven on AD3 at the
rising edge of RSTI. This logic level is reflected as the reset value of CSCRO[BEM]. Table 2-7 shows how
the logic level of AD3 corresponds to the byte enable mode for FBCSO at reset.

Table 2-7. AD3/BECONFIG, BE/BWE[3:0] Boot Configuration

AD3 Boot FBCSO Byte Strobe Configuration

0 BWE[3:0] are not asserted for reads;
BWE[3:0] only assert for write cycles

1 BE[3:0] can assert for both read and write cycles.

2.2.6.5 AD2—Auto Acknowledge Configuration (AACONFIG)

At reset, the enabling and disabling of auto acknowledge for boot FBCSO0 is determined by the logic level
driven on AD?2 at the rising edge of RSTI. AACONFIG is multiplexed with AD2 and sampled only at reset.
The AD2 logic level is reflected as the reset value of CSCRO[AA]. Table 2-8 shows how the AD2 logic
level corresponds to the auto acknowledge timing for FBCSO at reset. Auto acknowledge can be disabled
by driving a logic 0 on AD2 at reset.

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor 2-23

Table 2-8. AD2/AA_CONFIG Selection of FBCS0 Automatic Acknowledge

AD2 Boot FBCSO AA Configuration at Reset
0 Disabled
1 Enabled with 63 wait states

2.2.6.6 AD[1:0]—Port Size Configuration (PSCONFIG)

The default port size value of the boot FBCSO is determined by the logic levels driven on AD[1:0] at the
rising edge of RSTI, which are reflected as the reset value of CSCRO[PS]. Table 2-9 shows how the logic
levels of AD[1:0] correspond to the FBCSO port size at reset.

Table 2-9. AD[1:0]/PSCONFIG[1:0] Selection of FBCSO0 Port Size

AD[1:0] Boot FBCSO Port Size
00 32-bit port
01 8-bit port
1X 16-bit port

2.2.7 Ethernet Module Signals

The following signals are used by the Ethernet module for data and clock signals.

2.2.7.1 Management Data (EOMDIO, EILMDIO)

The bidirectional EMDIO signals transfer control information between the external PHY and the
media-access controller. Data is synchronous to EMDC and applies to MIl mode operation. This signal is
an input after reset. When the FEC operates in 10 Mbps 7-wire interface mode, this signal should be
connected to Vgg.

2.2.7.2 Management Data Clock (EOMDC, EILMDC)

EMDC is an output clock that provides a timing reference to the PHY for data transfers on the EMDIO
signal; it applies to MII mode operation.

2.2.7.3 Transmit Clock (EOTXCLK, EITXCLK)
This is an input clock that provides a timing reference for ETXEN, ETXDI[3:0], and ETXER.

2.2.7.4 Transmit Enable (EOTXEN, E1TXEN)

The transmit enable (ETXEN) output indicates when valid nibbles are present on the MII. This signal is
asserted with the first nibble of a preamble and is negated before the first ETXCLK following the final
nibble of the frame.

MCF547x Reference Manual, Rev. 5

2-24 Freescale Semiconductor

MCF547x External Signals

2.2.7.5 Transmit Data 0 (EOTXDO, E1TXDO)

ETXDO is the serial output Ethernet data and is only valid during the assertion of ETXEN. This signal is
used for 10 Mbps Ethernet data. This signal is also used for MIl mode data in conjunction with ETXD[3:1].

2.2.7.6 Collision (EOCOL, E1COL)

The ECOL input is asserted upon detection of a collision and remains asserted while the collision persists.
This signal is not defined for full-duplex mode.

2.2.7.7 Receive Clock (EORXCLK, E1IRXCLK)
The receive clock (ERXCLK) input provides a timing reference for ERXDV, ERXD[3:0], and ERXER.

2.2.7.8 Receive Data Valid (EORXDV, EIRXDV)

Asserting the receive data valid (ERXDV) input indicates that the PHY has valid nibbles present on the
MII. ERXDV should remain asserted from the first recovered nibble of the frame through to the last nibble.
Assertion of ERXDV must start no later than the SFD and exclude any EOF.

2.2.7.9 Receive Data 0 (EORXDO, E1IRXDO0)

ERXDO is the Ethernet input data transferred from the PHY to the media-access controller when ERXDV
is asserted. This signal is used for 10 Mbps Ethernet data. This signal is also used for M1l mode Ethernet
data in conjunction with ERXD[3:1].

2.2.7.10 Carrier Receive Sense (EOCRS, E1CRS)

ECRS is an input signal that, when asserted, signals that transmit or receive medium is not idle, and applies
to MII mode operation.

2.2.7.11 Transmit Data 1-3 (EOTXD[3:1], ELTXD[3:1])

These pins contain the serial output Ethernet data and are valid only during assertion of ETXEN in MII
mode.

2.2.7.12 Transmit Error (EOTXER, E1TXER)

When the ETXER output is asserted for one or more clock cycles while ETXEN is also asserted, the PHY
sends one or more illegal symbols. ETXER has no effect at 10 Mbps or when ETXEN is negated, and
applies to MII mode operation.

2.2.7.13 Receive Data 1-3 (EORXD[3:1], EIRXD[3:1])

These pins contain the Ethernet input data transferred from the PHY to the media-access controller when
ERXDV is asserted in MII mode operation.

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor 2-25

2.2.7.14 Receive Error (EORXER, EIRXER)

ERXER is an input signal that, when asserted along with ERXDYV, signals that the PHY has detected an
error in the current frame. When ERXDV is not asserted, ERXER has no effect and applies to M1l mode
operation.

2.2.8 Universal Serial Bus (USB)

2.2.8.1 USB Differential Data (USBD+, USBD-)

USBD+ and USBD- are the outputs of the on-chip USB 2.0 transceiver. They provide differential data for
the USB 2.0 bus.

2.2.8.2 USBVBUS
This is the USB cable VVbus monitor input, which is 5 V tolerant.

2.2.8.3 USBRBIAS

This is the connection for external current setting resistor. It should be connected to a 9.1kQ +/- 1%
pull-down resistor.

For the MCF5471 and MCF5470 devices this pin should be connected to a 9.1kQ +/- 20% pull-down
resistor.

2.2.8.4 USBCLKIN
This is the input pin for 12-MHz USB crystal circuit.

2.2.8.5 USBCLKOUT
This is the output pin for 12-MHz USB crystal circuit.

2.2.9 DMA Serial Peripheral Interface (DSPI) Signals

2.2.9.1 DSPI Synchronous Serial Data Output (DSPISOUT)

The DSPISOUT output provides the serial data from the DSPI and can be programmed to be driven on the
rising or falling edge of DSPISCK.

2.2.9.2 DSPI Synchronous Serial Data Input (DSPISIN)

The DSPISIN input provides the serial data to the DSPI and can be programmed to be sampled on the
rising or falling edge of DSPISCK.

2.2.9.3 DSPI Serial Clock (DSPISCK)

DSPISCK is a serial communication clock signal. In master mode, the DSPI generates the DSPISCK. In
slave mode, DSPISCK is an input from an external bus master.

MCF547x Reference Manual, Rev. 5

2-26 Freescale Semiconductor

MCF547x External Signals

2.2.9.4 DSPI Peripheral Chip Select/Slave Select (DSPICSO0/SS)

In master mode, the DSPICSO0 signal is a peripheral chip select output that selects which slave device the
current transmission is intended for.

In slave mode, the SS signal is a slave select input signal that allows an SP1 master to select the DSPI as
the target for transmission.

2.2.9.5 DSPI Chip Selects (DSPICS[2:3])

The synchronous peripheral chip selects (DSPICS[2:3]) outputs provide DSPI peripheral chip selects that
can be programmed to be active high or low.

2.2.9.6 DSPI Peripheral Chip Select 5/Peripheral Chip Select Strobe
(DSPICS5/PCSS)

DSPICS5 is a peripheral chip select output signal. When the DSPI is in master mode and the
DMCR[PCSSE] bit is cleared, this signal is used to select which slave device the current transfer is
intended for.

PCSS provides a strobe signal that can be used with an external demultiplexer for_deglitching of the
DSPICSn signals. When the DSPI is in master mode and DMCR[PCSSE] is set, the PCSS provides the
appropriate timing for the decoding of the DSPICSJ0,2,3] signals which prevents glitches from occurring.

This signal is not used in slave mode.

2.2.10 I1%°C /O Signals

The 1C serial interface module uses the signals in this section.

2.2.10.1 Serial Clock (SCL)

This bidirectional open-drain signal is the clock signal for the 12C interface. It is gither driven by the 1°C
module when the bus is in master mode, or it becomes the clock input when the 1°C is in slave mode.

2.2.10.2 Serial Data (SDA)

This bidirectional open-drain signal is the data input/output for the 1°C interface.

2.2.11 PSC Module Signals

The PSC modules use the signals in this section. The baud rate clock inputs are not supported.

2.2.11.1 Transmit Serial Data Output (PSCOTXD, PSC1TXD, PSC2TXD, PSC3TXD)

PSCnTXD are the transmitter serial data outputs for the PSC modules. The output is held high (mark
condition) when the transmitter is disabled, idle, or in the local loopback mode. The PSCxTXD pins can
be programmed to be driven low (break status) by a command.

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor 2-27

2.2.11.2 Receive Serial Data Input (PSCORXD, PSC1RXD, PSC2RXD, PSC3RXD)

PSCnRXD are the receiver serial data inputs for the PSC modules. When the PSC clock is stopped for
power-down mode, any transition on the pins restarts them.

2.2.11.3 Clear-to-Send (PSCnCTS/PSCBCLK)

These signals either operate as the clear-to-send input signals in UART mode or the bit clock input signals
in modem modes and IrDA modes. In MIR and FIR mode, the frequency is a multiple of the input bit clock
frequency, and the bit clock frequency should be within +/-0.1% and +/-0.01% of the ideal one,
respectively.

2.2.11.4 Request-to-Send (PSCnRTS/PSCFSYNC)

The PSCnRTS signals act as transmitter request-to-send (RTS) outputs in UART mode, the frame sync
input in modem8 and modem16 modes, or the RTS output (which acts as frame sync) in AC97 modem
mode.

2.2.12 DMA Controller Module Signals

The DMA controller module uses the signals in the following subsections to provide external requests for
either a source or destination.

2.2.12.1 DMA Request (DREQ[1:0])

These inputs are asserted by a peripheral device to request an operand transfer between that peripheral and
memory by either channel 0 or 1 of the on-chip DMA module.

2.2.12.2 DMA Acknowledge (DACK]1:0])

These outputs are asserted to acknowledge that a DMA request has been recognized.

2.2.13 Timer Module Signals

The signals in the following sections are external interfaces to the four general-purpose MCF547x timers.
These 32-bit timers can capture timer values, trigger external events or internal interrupts, or count
external events.

2.2.13.1 Timer Inputs (TIN[3:0])

TINnN can be programmed as clocks that cause events in the counter and prescalers. They can also cause
captures on the rising edge, falling edge, or both edges.

2.2.13.2 Timer Outputs (TOUT[3:0])

The programmable timer outputs, TOUTNn, pulse or toggle on various timer events.

MCF547x Reference Manual, Rev. 5

2-28 Freescale Semiconductor

MCF547x External Signals

2.2.14 Debug Support Signals

The MCF547x complies with the IEEE 1149.1a JTAG testing standard. JTAG test pins are multiplexed
with background debug pins. Except for TCK, these signals are selected by the value of MTMODO. If
MTMODO is high, JTAG signals are chosen; if it is low, debug module signals are chosen. MTMODO
should be changed only while RSTI is asserted.

2.2.14.1 Processor Clock Output (PSTCLK)

The internal PLL generates this output signal, and is the processor clock output that is used as the timing
reference for the debug bus timing (PSTDDATA[7:0]). PSTCLK is at the same frequency as the internal
XLB and SDRAM bus frequency. The frequency is one-half the core frequency.

2.2.14.2 Processor Status Debug Data (PSTDDATA[7:0])

Processor status data outputs indicate both processor status and captured address/data values. They operate
at half the processor’s frequency, using PSTCLK. Given that real-time trace information appears as a
sequence of 4-bit data values, there are no alignment restrictions; that is, PST values and operands may
appear on either PSTDDATA[7:0] nibble. The upper nibble, PSTDDATA[7:4], is most significant.

2.2.14.3 Development Serial Clock/Test Reset (DSCLK/TRST)

If MTMODO is low, DSCLK is selected. DSCLK is the development serial clock for the serial interface to
the debug module. The maximum DSCLK frequency is 1/5 CLKIN.

If MTMODO is high, TRST is selected. TRST asynchronously resets the internal JTAG controller to the
test logic reset state, causing the JTAG instruction register to choose the bypass instruction. When this
occurs, JTAG logic is benign and does not interfere with normal MCF547x functionality.

Although TRST is asynchronous, Freescale recommends that it makes an asserted-to-negated transition
only while TMS is held high. TRST has an internal pull-up resistor so if it is not driven low, it defaults to
alogic level of 1. If TRST is not used, it can be tied to ground or, if TCK is clocked, to EVpp. Tying TRST
to ground places the JTAG controller in test logic reset state immediately. Tying it to EVpp causes the
JTAG controller (if TMS is a logic level of 1) to eventually enter test logic reset state after 5 TCK clocks.

2.2.14.4 Breakpoint/Test Mode Select (BKPT/TMS)

If MTMODO is low, BKPT is selected. BKPT signals a hardware breakpoint to the processor in debug
mode.

If MTMODO is high, TMS is selected. The TMS input provides information to determine the JTAG test
operation mode. The state of TMS and the internal 16-state JTAG controller state machine at the rising
edge of TCK determine whether the JTAG controller holds its current state or advances to the next state.
This directly controls whether JTAG data or instruction operations occur. TMS has an internal pull-up
resistor so that if it is not driven low, it defaults to a logic level of 1. But if TMS is not used, it should be
tied to VDD'

2.2.145 Development Serial Input/Test Data Input (DSI/TDI)

If MTMODO is low, DSI is selected. DSI provides the single-bit communication for debug module
commands.

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor 2-29

If MTMODO is high, TDI is selected. TDI provides the serial data port for loading the various JTAG
boundary scan, bypass, and instruction registers. Shifting in data depends on the state of the JTAG
controller state machine and the instruction in the instruction register. Shifts occur on the TCK rising edge.
TDI has an internal pull-up resistor, so when not driven low it defaults to high. But if TDI is not used, it
should be tied to EVDD.

2.2.14.6 Development Serial Output/Test Data Output (DSO/TDO)

If MTMODO is low, DSO is selected. DSO provides single-bit communication for debug module
responses.

If MTMODO is high, TDO is selected. The TDO output provides the serial data port for outputting data
from JTAG logic. Shifting out data depends on the JTAG controller state machine and the instruction in
the instruction register. Data shifting occurs on the falling edge of TCK. When TDO is not outputting test
data, it is three-stated. TDO can be three-stated to allow bused or parallel connections to other devices
having a JTAG port.

2.2.14.7 Test Clock (TCK)

TCK is the dedicated JTAG test logic clock independent of the MCF547x processor clock. Various JTAG
operations occur on the rising or falling edge of TCK. Holding TCK high or low for an indefinite period
does not cause JTAG test logic to lose state information. If TCK is not used, it must be tied to ground.

2.2.15 Test Signals

2.2.15.1 Test Mode (MTMOD]3:0])

The test mode signals choose between multiplexed debug module and JTAG signals. If MTMODO is low,
the part is in normal and background debug mode (BDM); if it is high, it is in normal and JTAG mode. All
other MTMOD values are reserved; MTMODI]3:1] should be tied to ground and MTMOD]3:0] should not
be changed while RSTI is negated

2.2.16 Power and Reference Pins

These pins provide system power, ground, and references to the device. Multiple pins are provided for
adequate current capability. All power supply pins must have adequate bypass capacitance for
high-frequency noise suppression.

2.2.16.1 Positive Pad Supply (EVDD)
This pin supplies positive power to the 1/O pads.

2.2.16.2 Positive Core Supply (IVDD)

This pin supplies positive power to the core logic.

2.2.16.3 Ground (VSS)
This pin is the negative supply (ground) to the chip.

MCF547x Reference Manual, Rev. 5

2-30 Freescale Semiconductor

2.2.16.4 USB Power (USBVDD)
This pin supplies positive power to the USB module’s digital logic.

2.2.16.5 USB Oscillator Power (USB_OSCVDD)

This pin supplies positive power to the USB oscillator’s digital logic.

2.2.16.6 USB PHY Power (USB_PHYVDD)
This pin supplies positive power to the USB PHY’s digital logic.

2.2.16.7 USB Oscillator Analog Power (USB_OSCAVDD)

This pin supplies positive power to the USB oscillator’s analog circuits.

2.2.16.8 USB PLL Analog Power (USB_PLLVDD)
This pin supplies positive power to the USB PLL’s circuits.

2.2.16.9 SDRAM Memory Supply (SDVDD)
This pin supplies positive power to the SDRAM module.

2.2.16.10 PLL Analog Power (PLLVDD)
This pin supplies the positive power for the PLL.

2.2.16.11 PLL Analog Ground (PLLVSS)
This pin is the negative supply (ground) to the PLL.

MCF547x Reference Manual, Rev. 5

MCF547x External Signals

Freescale Semiconductor

2-31

MCF547x Reference Manual, Rev. 5

2-32 Freescale Semiconductor

Part |
Processor Core

Part | is intended for system designers who need to understand the operation of the MCF547x ColdFire
core and its enhanced multiply/accumulate (EMAC) execution unit. It describes the programming and
exception models, Harvard memory implementation, and debug module.

Contents

Part 1 contains the following chapters:

Chapter 3, “ColdFire Core,” provides an overview of the microprocessor core of the MCF547x.
The chapter begins with a description of enhancements from the V3 ColdFire core, and then fully
describes the V4e programming model as it is implemented on the MCF547x. It also includes a full
description of exception handling, data formats, an instruction set summary, and a table of
instruction timings.

Chapter 4, “Enhanced Multiply-Accumulate Unit (EMAC),” describes the MCF547x enhanced
multiply/accumulate unit, which executes integer multiply, multiply-accumulate, and
miscellaneous register instructions. The EMAC is integrated into the operand execution pipeline
(OEP).

Chapter 5, “Memory Management Unit (MMU),” describes the ColdFire virtual memory
management unit (MMU), which provides virtual-to-physical address translation and memory
access control.

Chapter 6, “Floating-Point Unit (FPU),” describes instructions implemented in the floating-point
unit (FPU) designed for use with the ColdFire family of microprocessors.

Chapter 7, “Local Memory,” describes the MCF547x implementation of the ColdFire V4e local
memory specification.

Chapter 8, “Debug Support,” describes the Revision C enhanced hardware debug support in the
MCF547x. This revision of the ColdFire debug architecture encompasses earlier revisions.

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor i

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor

Chapter 3
ColdFire Core

This chapter provides an overview of the microprocessor core of the MCF547x. The CF4e implementation
of the Version 4 (V4) core includes the floating-point unit (FPU), enhanced multiply-accumulate unit
(EMAC), and memory management unit (MMU); all are defined as optional in the V4 architecture. This
chapter also includes a full description of exception handling, data formats, an instruction set summary,
and a table of instruction timings.

3.1 Core Overview

The MCF547x is the first standard product to contain a Version 4e ColdFire microprocessor core. To create
this next-generation, high-performance core, many advanced microarchitectural techniques were
implemented. Most notable are a Harvard memory architecture, branch cache acceleration logic, and
limited superscalar dual-instruction issue capabilities, which together provide 410 (Dhrystone 2.1) MIPS
performance at 266 MHz.

The MCF547x core design emphasizes performance and backward compatibility, and represents the next
step on the ColdFire performance roadmap.

3.2 Features

The CF4e includes the following features defined as optional in the V4 core architecture:
» Floating-point unit (FPU)
* Virtual memory management unit (MMU)

» Enhanced multiply-accumulate unit (EMAC) for increased signal processing functionality plus
backward code compatibility with the MAC unit of previous ColdFire processors

V4 architecture features are defined as follows:

* \ariable-length RISC, clock-multiplied core

» Revision B of the ColdFire instruction set architecture (ISA_B), providing new instructions to
improve performance and code density

» Two independent, decoupled pipelines—four-stage instruction fetch pipeline (IFP) and five-stage
operand execution pipeline (OEP) for increased performance

» Ten-instruction, FIFO buffer that decouples the IFP and OEP

. L_imil'ged superscalar design approaches dual-issue performance with the cost of a scalar execution
pipeline

» Two-level branch acceleration mechanism with a branch cache, plus a prediction table for
increased performance of conditional Bcc instructions

» 32-bit address bus supporting 4 Gbytes of linear address space

» 32-bit data bus

» 16 user-accessible, 32-bit-wide, general-purpose registers

» Supervisor/user modes for system protection

» Two separate stack pointer (A7) registers—the supervisor stack pointer (SSP) and the user stack
pointer (USP)—that provide the required isolation between operating modes to support the MMU.

» \ector base register to relocate the exception-vector table
* Optimized for high-level language constructs

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor 3-1

3.2.1 Enhanced Pipelines

The IFP prefetches instructions. The OEP decodes instructions, fetches required operands, then executes
the specified function. The two independent, decoupled pipeline structures maximize performance while
minimizing core size. Pipeline stages are shown in Figure 3-1 and are summarized as follows:

» Four-stage IFP (plus optional instruction buffer stage)
— Instruction address generation (IAG) calculates the next prefetch address.
— Instruction fetch cycle 1 (IC1) initiates prefetch on the processor’s local instruction bus.
— Instruction fetch cycle 2 (1C2) completes prefetch on the processor’s local instruction bus.
— Instruction early decode (IED) generates time-critical decode signals needed for the OEP.
— Instruction buffer (IB) stage uses FIFO queue to minimize effects of fetch latency.
» Five-stage OEP with two optional processor bus write cycles
— Decode stage (DS/secDS) decodes and selects for two sequential instructions.
— Operand address generation (OAG) generates the address for the data operand.
— Operand fetch cycle 1 and 2 (OC1 and OC2) fetch data operands.
— Execute (EX) performs prescribed operations on previously fetched data operands.
— Write data available (DA) makes data available for operand write operations only.
— Store data (ST) updates memory element for operand write operations only.

MCF547x Reference Manual, Rev. 5

3-2 Freescale Semiconductor

Features

Instruction Fetch
Pipeline

IAG

Y

YYVY

Branch Ic1 Instruction
Cache Memory -

IC2

A

Branch
Accel.| IED

Opergnd Execltion

DA Internal
Pipeline BuS
Y Y -~
> DS [secDS Y
OAG >
Data
ocC1 (Operand) |- >
Memory
ocC2 < <
Misalignment
EX Module
DA

\l\
\ \J

DSCLK DSI DSO PSTDDATA PSTCLK
Figure 3-1. ColdFire Enhanced Pipeline

3.2.1.1 Instruction Fetch Pipeline (IFP)

Because the fetch and execution pipelines are decoupled by a ten-instruction FIFO buffer, the IFP can
prefetch instructions before the OEP needs them, minimizing stalls.

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor 3-3

3.2.11.1 Branch Acceleration

To maximize the performance of conditional branch instructions, the IFP implements a sophisticated
two-level acceleration mechanism. The first level is an 8-entry, direct-mapped branch cache with 2 bits for
indicating four prediction states (strongly or weakly; taken or not-taken) for each entry. The branch cache
also provides the association between instruction addresses and the corresponding target address. In the
event of a branch cache hit, if the branch is predicted as taken, the branch cache sources the target address
from the IC1 stage back into the IAG to redirect the prefetch stream to the new location.

The branch cache implements instruction folding, so conditional branch instructions correctly predicted as
taken can execute in zero cycles. For conditional branches with no information in the branch cache, a
second-level, direct-mapped prediction table is accessed. Each of its 128 entries uses the same 2-bit
prediction mechanism as the branch cache.

If a branch is predicted as taken, branch acceleration logic in the IED stage generates the target address.
Other change-of-flow instructions, including unconditional branches, jumps, and subroutine calls, use a
similar mechanism where the IFP calculates the target address. The performance of subroutine return
instruction (RTS) is improved through the use of a four-entry, LIFO hardware return stack. In all cases,
these mechanisms allow the IFP to redirect the fetch stream down the predicted path well ahead of
instruction execution.

3.2.1.2 Operand Execution Pipeline (OEP)

The two instruction registers in the decode stage (DS) of the OEP are loaded from the FIFO instruction
buffer or are bypassed directly from the instruction early decode (IED). The OEP consists of two
traditional, two-stage RISC compute engines with a dual-ported register file access feeding an arithmetic
logic unit (ALU).

The compute engine at the top of the OEP (the address ALU) is used typically for operand address
calculations; the execution ALU at the bottom is used for instruction execution. The resulting structure
provides 4 Gbytes/S operand bandwidth (at 162 MHz) to the two compute engines and supports
single-cycle execution speeds for most instructions, including all load and store operations and most
embedded-load operations. The V4 OEP supports the ColdFire Revision B instruction set, which adds a
few new instructions to improve performance and code density.

The OEP also implements the following advanced performance features:
» Stalls are minimized by dynamically basing the choice between the address ALU or execution
ALU for instruction execution on the pipeline state.

» The address ALU and register renaming resources together can execute heavily used opcodes and
forward results to subsequent instructions with no pipeline stalls.

 Instruction folding involving MOVE instructions allows two instructions to be issued in one cycle.
The resulting microarchitecture approaches full superscalar performance at a much lower silicon
cost.

3.2.1.2.1 lllegal Opcode Handling

To aid in conversion from M68000 code, every 16-bit operation word is decoded to ensure that each
instruction is valid. If the processor attempts execution of an illegal or unsupported instruction, an illegal
instruction exception (vector 4) is taken.

3.2.1.2.2 Enhanced Multiply/Accumulate (EMAC) Unit

The EMAC unit in the Version 4e provides hardware support for a limited set of digital signal processing
(DSP) operations used in embedded code, while supporting the integer multiply instructions in the

MCF547x Reference Manual, Rev. 5

3-4 Freescale Semiconductor

Features

ColdFire microprocessor family. The MAC features a four-stage execution pipeline, optimized for 32 x 32
multiplies. It is tightly coupled to the OEP, which can issue a 32 x 32 multiply with a 32-bit accumulation
and fetch a 32-bit operand in a single cycle. A 32 x 32 multiply with a 32-bit accumulation requires four
cycles before the next instruction can be issued.

Figure 3-2 shows basic functionality of the EMAC. A full set of instructions are provided for signed and
unsigned integers plus signed, fixed-point fractional input operands.

Operand Y Operand X

Shift 0,1,-1

Accumulator

\j
Figure 3-2. ColdFire Multiply-Accumulate Functionality Diagram

The EMAC provides functionality in the following three related areas, which are described in detail in
Chapter 4, “Enhanced Multiply-Accumulate Unit (EMAC):”

» Signed and unsigned integer multiplies
» Multiply-accumulate operations with signed and unsigned fractional operands
* Miscellaneous register operations

3.2.1.2.3 Memory Management Unit (MMU)

The ColdFire memory management architecture provides a demand-paged, virtual-address environment
with hardware address translation acceleration. It supports supervisor/user, read, write, and execute
permission checking on a per-memory request basis.

The architecture defines the MMU TLB, associated control logic, TLB hit/miss logic, address translation
based on the TLB contents, and access faults due to TLB misses and access violations. It intentionally
leaves some virtual environment details undefined to maximize the software-defined flexibility. These
include the exact structure of the memory-resident pointer descriptor/page descriptor tables, the base
registers for these tables, the exact information stored in the tables, the methodology (if any) for
maintenance of access, and written information on a per-page basis.

3.2.1.2.4 Floating Point Unit (FPU)

The floating-point unit (FPU) provides hardware support for floating point math operations. The FPU
conforms to the American National Standards Institute (ANSI)/Institute of Electrical and Electronics
Engineers (IEEE) Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Standard 754).

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor 3-5

The hardware unit is optimized for real-time execution with exceptions disabled and default results
provided for specific operations, operands, and number types. The FPU does not support all IEEE-754
number types and operations in hardware. Exceptions can be enabled to support these cases in software.

3.2.1.25 Hardware Divide Unit

The hardware divide unit performs the following integer division operations:

» 32-bit operand/16-bit operand producing a 16-bit quotient and a 16-bit remainder
» 32-bit operand/32-bit operand producing a 32-bit quotient
» 32-bit operand/32-bit operand producing a 32-bit remainder

3.2.1.3 Harvard Memory Architecture

A Harvard memory architecture supports the increased bandwidth requirements of the CF4e processor
pipelines by providing separate configuration, access control, and protection resources for data (operand)
and instruction memory. The CF4e has separate instruction and data buses to processor-local memories,
eliminating conflicts between instruction fetches and operand accesses.

3.2.2 Debug Module Enhancements

The ColdFire processor core debug interface supports system integration in conjunction with low-cost
development tools. Real-time trace and debug information can be accessed through a standard interface,
which allows the processor and system to be debugged at full speed without costly in-circuit emulators.
The CF4e debug unit is a compatible upgrade to MCF52xx and MCF53xx debug modules with added
support for the CF4e MMU module.

The Version 2 ColdFire core implemented the original debug architecture, now called Revision A. Based
on feedback from customers and third-party developers, enhancements have been added to succeeding
generations of ColdFire cores. For Revision A, CSR[HRL] is 0. See Section 8.4.2, “Configuration/Status
Register (CSR).”

The Version 3 core implements Revision B of the debug architecture, offering more flexibility for
configuring the hardware breakpoint trigger registers and removing the restrictions involving concurrent
BDM processing while hardware breakpoint registers are active. For Revision B, CSR[HRL] is 1.

Revision C of the debug architecture more than doubles the on-chip breakpoint registers and provides an
ability to interrupt debug service routines. For Revision C, CSR[HRL] is 2.

Differences between Revision B and C are summarized as follows:

» Debug Revision B has separate PST[3:0] and DDATA[3:0] signals.

» Debug Revision C adds breakpoint registers and supports normal interrupt request service during
debug. It combines debug signals into PSTDDATA[7:0].

The addition of the memory management unit (MMU) to the baseline architecture requires corresponding
enhancements to the ColdFire debug functionality, resulting in Revision D. For Revision D, the revision
level bit, CSR[HRL], is 3.

With software support, the MMU can provide a demand-paged, virtual address environment. To support
debugging in this virtual environment, the debug enhancements are primarily related to the expansion of
the virtual address to include the 8-bit address space identifier (ASID). Conceptually, the virtual address
is expanded to a 40-bit value: the 8-bit ASID plus the 32-bit address.

The expansion of the virtual address affects the following two major debug functions:

MCF547x Reference Manual, Rev. 5

3-6 Freescale Semiconductor

Programming Model

» The ASID is optionally included in the specification of the hardware breakpoint registers. As an
example, the four PC breakpoint registers are each expanded by 8 bits, so that a specific ASID
value may be programmed as part of the breakpoint instruction address. Likewise, each operand
address/data breakpoint register is expanded to include an ASID value. Finally, new control
registers define if and how the ASID is to be included in the breakpoint comparison trigger logic.

* The debug module implements the concept of ownership trace in which the ASID value may be
optionally displayed as part of the real-time trace functionality. When enabled, real-time trace
displays instruction addresses on every change-of-flow instruction that is not absolute or
PC-relative. For Revision D, this instruction address display optionally includes the contents of the
ASID, thus providing the complete instruction virtual address on these instructions.

Additionally when a Sync_PC serial BDM command is loaded from the external development
system, the processor optionally displays the complete virtual instruction address, including the
8-bit ASID value.

In addition to these ASID-related changes, the new MMU control registers are accessible by using serial
BDM commands. The same BDM access capabilities are also provided for the EMAC and FPU
programming models.

Finally, a new serial BDM command is implemented to assist debugging when a software error generates
an incorrect memory address that hangs the external bus. The new BDM command attempts to break this
condition by forcing a bus termination.

3.3 Programming Model

The MCF547x programming model consists of two instruction and register groups—user and supervisor,
shown in Figure 3-3. User mode programs are restricted to user, EMAC, and floating point instructions
and programming models. Supervisor-mode system software can reference all user-mode, EMAC, and
floating point instructions and registers and additional supervisor instructions and control registers. The
user or supervisor programming model is selected based on SR[S]. The following sections describe the
registers in the user, EMAC, floating point, and supervisor programming models.

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor 3-7

User Registers

Supervisor Registers

63

31

31

FPO

FP1

FP2

FP3

FP4

FP5

FP6

FP7

FPCR

FPSR

FPIAR

31

MACSR

ACCO

ACC1

ACC2

ACC3

ACCext01

ACCext23

MASK

31

19 [T{CCR]|SR

OTHER_A7

| Must be zeros

VBR

CACR

ASID

ACRO

ACR1

ACR2

ACR3

MMUBAR

ROMBARO

ROMBAR1

RAMBARO

RAMBAR1

MBAR

Data registers

Address registers

User stack pointer
Program counter
Condition code register

Floating-point data registers

Floating-point control register
Floating-point status register
Floating-point instruction address register

MAC status register

MAC accumulator 0

MAC accumulator 1 (EMAC only)
MAC accumulator 2 (EMAC only)
MAC accumulator 3 (EMAC only)
ACCO and ACC1 extensions
ACC2 and ACC3 extensions
MAC mask register

Status register

Supervisor A7 stack pointer

Vector base register

Cache control register

Address space ID register

Access control register O (data)
Access control register 1 (data)
Access control register 2 (instruction)
Access control register 3 (instruction)
MMU base address register

ROM base address register 0

ROM base address register 1

RAM base address registerO

RAM base address register 1
Module base address register

Figure 3-3. ColdFire Programming Model

MCF547x Reference Manual, Rev. 5

3-8

Freescale Semiconductor

Programming Model

3.3.1 User Programming Model

The user programming model, shown in Figure 3-3, consists of the following registers:
» 16 general-purpose, 32-bit registers (D7-D0 and A7-A0); A7 is a user stack pointer
» 32-bit program counter
» 8-bit condition code register
* Registers to support the EMAC
» Register to support the floating-point unit (FPU)

3.3.1.1 Data Registers (D0-D7)

Registers DO-D7 are used as data registers for bit, byte (8-bit), word (16-bit), and longword (32-bit)
operations. They may also be used as index registers.

3.3.1.2 Address Registers (AO-A6)

The address registers (A0O—-A6) can be used as software stack pointers, index registers, or base address
registers, and may be used for word and longword operations.

3.3.2 User Stack Pointer (A7)

The CF4e architecture supports two unique stack pointer (A7) registers—the supervisor stack pointer
(SSP) and the user stack pointer (USP). This support provides the required isolation between operating
modes as dictated by the virtual memory management scheme provided by the memory management unit
(MMU). The SSP is described in Section 5.4.2, “Supervisor/User Stack Pointers.”

3.3.2.1 Program Counter (PC)

The PC holds the address of the executing instruction. For sequential instructions, the processor
automatically increments PC. When program flow changes, the PC is updated with the target instruction.
For some instructions, the PC specifies the base address for PC-relative operand addressing modes.

3.3.2.2 Condition Code Register (CCR)

The CCR, Figure 3-4, occupies SR[7-0], as shown in Figure 3-3. The CCR[4-0] bits are indicator flags
based on results generated by arithmetic operations.

6 4 2 1 0
R 0 0 0 X N z \% C
W
Reset| O 0 0 0 0 0 0 0
Reg Accessed using R/W commands for the status register
Addr

Figure 3-4. Condition Code Register (CCR)

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor 3-9

Table 3-1. CCR Field Descriptions

Bits Name Description

7-5 — Reserved, should be cleared.

4 X Extend condition code bit. Assigned the value of the carry bit for arithmetic operations;
otherwise not affected or set to a specified result. Also used as an input operand for
multiple-precision arithmetic.

3 N Negative condition code bit. Set if the msb of the result is set; otherwise cleared.
2 Z Zero condition code bit. Set if the result equals zero; otherwise cleared.
1 \% Overflow condition code bit. Set if an arithmetic overflow occurs, implying that the result

cannot be represented in the operand size; otherwise cleared.

0 C Carry condition code hit. Set if a carry-out of the data operand msb occurs for an addition
or if a borrow occurs in a subtraction; otherwise cleared.

3.3.3

EMAC Programming Model

The registers in the EMAC portion of the user programming model are described in Chapter 4, “Enhanced
Multiply-Accumulate Unit (EMAC),” and include the following registers:

Four 48-bit accumulator registers partitioned as follows:

— Four 32-bit accumulators (ACC0O-ACC3)

— Eight 8-bit accumulator extension bytes (two per accumulator). These are grouped into two
32-bit values for load and store operations (ACCEXTO01 and ACCEXT23).

Accumulators and extension bytes can be loaded, copied, and stored, and results from EMAC

arithmetic operations generally affect the entire 48-bit destination.

Eight 8-bit accumulator extensions (two per accumulator), packaged as two 32-bit values for load

and store operations (ACCext01 and ACCext23)

One 16-bit mask register (MASK)

One 32-bit status register (MACSR), including four indicator bits signaling product or
accumulation overflow (one for each accumulator: PAVO-PAV3).

These registers are shown in Figure 3-5.

3.34

31 0

MACSR MAC status register
ACCO MAC accumulator O
ACC1 MAC accumulator 1
ACC2 MAC accumulator 2
ACC3 MAC accumulator 3
ACCext01 Extensions for ACCO and ACC1
ACCext23 Extensions for ACC2 and ACC3
MASK MAC mask register

Figure 3-5. EMAC Register Set

FPU Programming Model

The registers in the FPU portion of the programming model are described in Chapter 6, “Floating-Point
Unit (FPU),” and include the folllowing registers:

MCF547x Reference Manual, Rev. 5

3-10

Freescale Semiconductor

Programming Model

» Eight 64-bit floating-point data registers (FPO-FP7)

* One 32-bit floating-point control register (FPCR)

* One 32-bit floating-point status register (FPSR)

* One 32-bit floating-point instruction address register (FPIAR)

Figure 3-6 shows the FPU programming model.

63 31 0

FPO Floating-point data registers
FP1

FP2

FP3

FP4

FP5

FP6

FP7

FPCR Floating-point control register
FPSR Floating-point status register
FPIAR Floating-point instruction address register

Figure 3-6. Floating-Point Programmer’s Model

3.3.5 Supervisor Programming Model

The MCF547x supervisor programming model is shown in Figure 3-3. Typically, system programmers use
the supervisor programming model to implement operating system functions and provide memory and 1/0O
control. The supervisor programming model provides access to the user registers and additional supervisor
registers, which include the upper byte of the status register (SR), the vector base register (VBR), and
registers for configuring attributes of the address space connected to the Version 4 processor core. Most
supervisor-level registers are accessed by using the MOVEC instruction with the control register
definitions in Table 3-2.

Table 3-2. MOVEC Register Map

Rc[11-0] Register Definition

0x002 Cache control register (CACR)

0x004 Access control register 0 (ACRO)

0x005 Access control register 1 (ACR1)

0x006 Access control register 2 (ACR2)

0x007 Access control register 3 (ACR3)

0x801 Vector base register (VBR)

0xC04 RAM base address register 0 (RAMBARO)

0xCO05 RAM base address register 1 (RAMBAR1)

O0xCOF Module base address register (MBAR)

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor 3-11

3.3.5.1 Status Register (SR)

The SR stores the processor status, the interrupt priority mask, and other control bits. Supervisor software
can read or write the entire SR; user software can read or write only SR[7-0], described in Section 3.3.2.2,
“Condition Code Register (CCR).” The control bits indicate processor states—trace mode (T), supervisor
or user mode (S), and master or interrupt state (M). SR is set to O0x27xx after reset.

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

System byte Condition code register (CCR)
R T 0 S M 0 0| 0] 0] X N z Y
w
Reset 0 0 1 0 0 1 1 1 o o 0 — — — — —
Reg 0X27xx
Addr
Figure 3-7. Status Register (SR)
Table 3-3 describes SR fields.
Table 3-3. SR Field Descriptions
Bits Name Description
15 T Trace enable. When T is set, the processor performs a trace exception after every
instruction.
13 S Supervisor/user state. Indicates whether the processor is in supervisor or user mode
0 User mode
1 Supervisor mode
12 M Master/interrupt state. Cleared by an interrupt exception. It can be set by software during
execution of the RTE or move to SR instructions so the OS can emulate an interrupt stack
pointer.

10-8 Interrupt priority mask. Defines the current interrupt priority. Interrupt requests are inhibited
for all priority levels less than or equal to the current priority, except the edge-sensitive
level-7 request, which cannot be masked.

7-0 CCR Condition code register. See Table 3-1.

3.3.5.2 Vector Base Register (VBR)

The VBR holds the base address of the exception vector table in memory. The displacement of an
exception vector is added to the value in this register to access the vector table. The VBR[19-0] bits are
not implemented and are assumed to be zero, forcing the vector table to be aligned on a 0-modulo-1-Mbyte
boundary.

MCF547x Reference Manual, Rev. 5

3-12

Freescale Semiconductor

Programming Model

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
R Exception vector table base address?® 0 0 0 0
w
Reset 0 0 0 0 0 0 0 0 0O 0O 0 oO 0 0 0 0
15 14 13 12 1 10 9 8 7
R 0 0 0 0 0 0 0 0 o|0|0]O 0 0 0 0
w
Reset| 0 0 0 0 0 0 0 0 0 0 0 O 0 0 0 0
Reg 0x801
Addr

Written from a BDM serial command or from the CPU using the MOVEC instruction. VBR can be read from
the debug module only. The upper 12 bits are returned, the low-order 20 bits are undefined.

Figure 3-8. Vector Base Register (VBR)

3.3.5.3 Cache Control Register (CACR)

The CACR controls operation of both the instruction and data cache memory. It includes bits for enabling,
freezing, and invalidating cache contents. It also includes bits for defining the default cache mode and
write-protect fields. See Section 7.10.1, “Cache Control Register (CACR).”

3.3.5.4 Access Control Registers (ACR0O-ACR?3)

The access control registers (ACR0-ACR3) define attributes for four user-defined memory regions: ACRO
and ACR1 control data memory space, and ACR2 and ACR3 control instruction memory space. Attributes
include definition of cache mode, write protect and buffer write enables. See Section 7.10.2, “Access
Control Registers (ACR0-ACR3).”

3.3.5.5 RAM Base Address Registers (RAMBARO and RAMBAR1)

The RAMBAR registers determine the base address location of the internal SRAM modules and indicate
the types of references mapped to each. Each RAMBAR includes a base address, write-protect bit, address
space mask bits, and an enable. The RAM base address must be aligned on a 0-module-2-Kbyte boundary.
See Section 7.4.1, “SRAM Base Address Registers (RAMBARO/RAMBARL1).”

3.3.5.6 Module Base Address Register (MBAR)

The module base address register (MBAR) defines the logical base address for the memory-mapped space
containing the control registers for the on-chip peripherals. See Section 9.3.1, “Module Base Address
Register (MBAR).”

3.3.6 Programming Model Table

Table 3-4 lists register names, the CPU space location, whether the register is written from the processor
using the MOVEC instruction, and the complete register name.

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor 3-13

Table 3-4. ColdFire CPU Registers

Name CPU Space (Rc) | Written with MOVEC Register Name

Memory Management Control Registers

CACR 0x002 Yes Cache control register

ASID 0x003 Yes Address space identifier
ACRO-ACRS3 | 0x004—-0x007 Yes Access control registers 0—3
MMUBAR 0x008 Yes MMU base address register

Processor General-Purpose Registers

DO-D7 0x(0,1)80-0x(0,1 No Data registers 0-7 (0 = load, 1 = store)
)87

AO0-A7 0x(0,1)88-0x(0,1 No Address registers 0-7 (0 = load, 1 = store) A7 is user
)8F stack pointer

Processor Miscellaneous Registers

OTHER_A7 | 0x800 No Other stack pointer

VBR 0x801 Yes Vector base register

MACSR 0x804 No MAC status register

MASK 0x805 No MAC address mask register
ACCO-ACC3 | 0x806—-0x80B No MAC accumulators 0-3

ACCext01 0x807 No MAC accumulator 0, 1 extension bytes
ACCext23 0x808 No MAC accumulator 2, 3 extension bytes
SR 0x80E No Status register

PC 0x80F Yes Program counter

Processor Floating-Point Registers

FPUO 0x810 No 32 msbs of floating-point data register O
FPLO 0x811 No 32 Isbs of floating-point data register O
FPU1 0x812 No 32 msbs of floating-point data register 1
FPL1 0x813 No 32 Isbs of floating-point data register 1
FPU2 0x814 No 32 msbs of floating-point data register 2
FPL2 0x815 No 32 Isbs of floating-point data register 2
FPU3 0x816 No 32 msbs of floating-point data register 3
FPL3 0x817 No 32 Isbs of floating-point data register 3
FPU4 0x818 No 32 msbs of floating-point data register 4
FPL4 0x819 No 32 Isbs of floating-point data register 4
FPU5 Ox81A No 32 msbs of floating-point data register 5
FPL5 0x81B No 32 Isbs of floating-point data register 5
FPU6 0x81C No 32 msbs of floating-point data register 6

MCF547x Reference Manual, Rev. 5

3-14 Freescale Semiconductor

Data Format Summary

Table 3-4. ColdFire CPU Registers (Continued)

Name CPU Space (Rc) | Written with MOVEC Register Name
FPL6 0x81D No 32 Isbs of floating-point data register 6
FPU7 Ox81E No 32 msbs of floating-point data register 7
FPL7 Ox81F No 32 Isbs of floating-point data register 7
FPIAR 0x821 No Floating-point instruction address register
FPSR 0x822 No Floating-point status register
FPCR 0x824 No Floating-point control register

Local Memory and Module Control Registers

RAMBARO 0xC04 Yes RAM base address register 0

RAMBAR1 0xC05 Yes RAM base address register 1

MBAR OxCOF Yes Primary module base address register (not a core
register)

3.4 Data Format Summary

Table 3-5 lists the operand data formats. Integer operands can reside in registers, memory, or instructions.
The operand size is either explicitly encoded in the instruction or implicitly defined by the instruction
operation.

Table 3-5. Integer Data Formats

Operand Data Format Size
Bit 1 bit
Byte integer 8 bits
Word integer 16 bits
Longword integer 32 bits

3.4.1 Data Organization in Registers

The following sections describe data organization in data, address, and control registers. Section 6.2.2,
“Floating-Point Data Formats,” describes floating-point formatting.

3.4.1.1 Integer Data Format Organization in Registers

Figure 3-9 shows the integer format for data registers. Each integer data register is 32 bits wide. Byte and
word operands occupy the lower 8- and 16-bit portions of integer data registers, respectively. Longword
operands occupy the entire 32 bits of integer data registers. A data register that is either a source or
destination operand only uses or changes the appropriate lower 8 or 16 bits in byte or word operations,
respectively. The remaining high-order portion does not change. Note that the least-significant bit is bit O
for all data types, whereas the msbs for longword integer is bit 31, the msb of a word integer is bit 15, and
the msb of a byte integer is bit 7.

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor 3-15

31 30 1 0

msb Isb | Bit (0 bit number 31)
31 8 7 6 1 0
Not used msb |Lower-order byte| Isb | Byte (8 bits)
31 16 15 14 1 0
Not used msb| Lower-order word Isb | Word (16 bits)
31 30 1 0
msb Longword Isb | Longword (32 bits)

Figure 3-9. Organization of Integer Data Format in Data Registers

Instruction encodings disallow use of address registers for byte operands. When an address register is a
source operand, either the low-order word or the entire longword operand is used, depending on the
operation size. Word-length source operands are sign-extended to 32 bits and then used in the operation
with an address register destination. When an address register is a destination, the entire register is
affected, regardless of the operation size. Figure 3-10 shows integer formats for address registers.

31 16 15 0
Sign-Extended 16-Bit Address Operand

31 0
Full 32-Bit Address Operand

Figure 3-10. Organization of Integer Data Formats in Address Registers

The size of control registers varies according to function. Some have undefined bits reserved for future
definition by Freescale. Those bits read as zeros and must be written as zeros for future compatibility.
Operations to the SR and CCR are word-sized. The upper CCR byte is read as all zeros and is ignored when
written, regardless of privilege mode.

3.4.1.2 Integer Data Format Organization in Memory

ColdFire processors use big-endian addressing. Byte-addressable memory organization allows lower
addresses to correspond to higher-order bytes. The address N of a longword data item corresponds to the
address of the high-order word. The lower-order word is at address N + 2. The address of a word data item
corresponds to the address of the high-order byte. The lower-order byte is at address N + 1. This
organization is shown in Figure 3-11.

MCF547x Reference Manual, Rev. 5

3-16 Freescale Semiconductor

Data Format Summary

31 24 23 16 15 8 7 0
Longword 0x0000_0000
Word 0x0000_0000 Word 0x0000_0002
Byte 0x0000_0000 | Byte 0x0000_0001 Byte 0x0000_0002 | Byte 0x0000_0003
Longword 0x0000_0004
Word 0x0000_0004 Word 0x0000_0006
Byte 0x0000_0004 | Byte 0x0000_0005 Byte 0x0000_0006 | Byte 0x0000_0007

Longword OxFFFF_FFFC
Word OxFFFF_FFFC Word OxFFFF_FFFE
Byte OXFFFF_FFFC | Byte OXFFFF_FFFD Byte OXFFFF_FFFE | Byte OXFFFF_FFFF

Figure 3-11. Memory Operand Addressing

3.4.2 EMAC Data Representation

The EMAC supports the following three modes, where each mode defines a unique operand type.

* Two’s complement signed integer: In this format, an N-bit operand value lies in the range - -2(N-1)
< operand < 2(N-D 1" The binary point is right of the Isb.

« Unsigned integer: In this format, an N-bit operand value lies in the range 0 < operand < 2V - 1. The
binary point is right of the Isb.

» Two’s complement, signed fractional: In an N-bit number, the first bit is the sign bit. The remaining
bits signify the first N-1 bits after the binary point. Given an N-bit number, ay_jayn.pay.3..- 82813,
its value is given by the equation in Figure 3-12.

N-2
value = —(1-ay_p+ Z o 1-N) i

i=0
Figure 3-12. Two’'s Complement, Signed Fractional Equation

This format can represent numbers in the range -1 < operand < 1 - 2(N-1),

For words and longwords, the largest negative number that can be represented is -1, whose mternal
representation is 0x8000 and 0x8000_0000, respectlvelg The largest positive word is 0x7FFF or (1 - 271);
the most positive longword is 0x7FFF_FFFF or (1 -2

For more information, see Chapter 4, “Enhanced Multlply-AccumuIate Unit (EMAC).”

3.4.2.1 Floating-Point Data Formats and Types

The FPU supports signed byte, word, and longword integer formats, which are identical to those
supported by the integer unit. The FPU also supports single- and double-precision binary
floating-point formats that fully comply with the IEEE-754 standard.

For more information, see Chapter 6, “Floating-Point Unit (FPU).”

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor 3-17

3.4.2.1.1 Signed-Integer Data Formats
The FPU supports 8-bit byte (B), 16-bit word (W), and 32-bit longword (L) integer data formats.

3.4.2.1.2 Floating-Point Data Formats

Figure 3-13 shows the two binary floating-point data formats.

31 30 22 0
S 8-Bit Exponent 23-Bit Fraction Single
\— Sign of Mantissa
63 62 51 0
S 11-Bit Exponent 52-Bit Fraction Double

\— Sign of Mantissa

Figure 3-13. Floating-Point Data Formats

Note that, throughout this chapter, a mantissa is defined as the concatenation of an integer bit, the binary
point, and a fraction. A fraction is the term designating the bits to the right of the binary point in the
mantissa.

Mantissa

(integer bit).(fraction)

Figure 3-14. Mantissa

The integer bit is implied to be set for normalized numbers and infinities, clear for zeros and denormalized
numbers. For not-a-numbers (NANS), the integer bit is ignored. The exponent in both floating-point
formats is an unsigned binary integer with an implied bias added to it. Subtracting the bias from exponent
yields a signed, two’s complement power of two. This represents the magnitude of a normalized
floating-point number when multiplied by the mantissa.

By definition, a normalized mantissa always takes values starting from 1.0 and going up to, but not
including, 2.0; that is, [1.0...2.0).

3.5 Addressing Mode Summary

Addressing modes are categorized by how they are used. Data addressing modes refer to data operands.
Memory addressing modes refer to memory operands. Alterable addressing modes refer to alterable
(writable) data operands. Control addressing modes refer to memory operands without an associated size.

These categories sometimes combine to form more restrictive categories. Two combined classifications
are alterable memory (both alterable and memory) and data alterable (both alterable and data). Twelve of
the most commonly used effective addressing modes from the M68000 Family are available on ColdFire
microprocessors. Table 3-6 summarizes these modes and their categories.

MCF547x Reference Manual, Rev. 5

3-18 Freescale Semiconductor

Instruction Set Summary

Table 3-6. ColdFire Effective Addressing Modes

Category
Addressing Modes Syntax I\élic;cli; Ei?d
Data Memory Control Alterable
Register direct
Data Dn 000 reg. no. X — — X
Address An 001 reg. no. — — —
Register indirect
Address (An) 010 reg. no. X X X X
Address with (An)+ 011 reg. no. X X — X
Postincrement —(An) 100 reg. no. X X — X
Address with (d16, An) 101 reg. no. X X X
Predecrement
Address with
Displacement
Address register indirect with
scaled index (dg, An, 110 reg. no. X X X X
8-bit displacement Xi*SF)
Program counter indirect
with displacement (d16, PC) 111 010 X X X —
Program counter indirect with
scaled index (dg, PC, 111 011 X X X —
8-bit displacement Xi*SF)
Absolute data addressing
Short (xxx).W 111 000 X X X —
Long (xxx).L 111 001 X X X —
Immediate HIXXX> 111 100 X X — —

3.6 Instruction Set Summary

The ColdFire instruction set is a simplified version of the M68000 instruction set. The removed
instructions include BCD, bit field, logical rotate, decrement and branch, and integer multiply with a 64-bit
result.

“About This Book” lists notational conventions used throughout this manual.

3.6.1 Additions to the Instruction Set Architecture

The original ColdFire ISA was derived from M68000 Family opcodes based on extensive analysis of
embedded application code. After the first ColdFire compilers were created, developers identified ISA
additions that would enhance both code density and overall performance. Additionally, as users
implemented ColdFire-based designs into a wide range of embedded systems, they identified frequently
used instruction sequences that could be improved by creating new instructions. This observation was
especially prevalent in environments that used substantial amounts of assembly language code.

The original ISA minimized support for instructions referencing byte and word operands. MOVE.B and
MOVE.W were fully supported; otherwise, only CLR (clear) and TST (test) supported these data types.

Based on input from compiler writers and system users, a set of instruction enhancements was proposed
to address the following:

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor 3-19

Enhanced support for byte and word-sized operands through new move operations
Enhanced support for position-independent code

For descriptions of the ColdFire instruction set, see the latest version of the ColdFire Programmer’s
Reference Manual.

The following list summarizes new and enhanced instructions of ISA_B:

New instructions:

— INTOUCH loads blocks of instructions to be locked in the instruction cache.

— MOV3Q.L moves 3-bit immediate data to the destination location.

— MOVE to/from USP loads and stores user stack pointer.

— MVS.{B,W} sign-extends the source operand and moves it to the destination register.
— MVZ.{B,W} zero-fills the source operand and moves it to the destination register.

— SATS.L performs a saturation operation for signed arithmetic and updates the destination
register depending on CCR[V] and bit 31 of the register.

— TAS.B performs an indivisible read-modify-write cycle to test and set the addressed memory
byte.

Enhancements to existing Revision_A instructions:

— Longword support for branch instructions (Bcc, BRA, BSR)

— Byte and word support for compare instructions (CMP, CMPI)

— Word support for the compare address register instruction (CMPA)

— Byte and longword support for MOVE.x,where the source is immediate data and the
destination is specified by d16(Ax); that is, MOVE.{B,W} #<data>, d16(AXx)
Floating-point instructions. See Chapter 6, “Floating-Point Unit (FPU).”

EMAC instructions. See Chapter 4, “Enhanced Multiply-Accumulate Unit (EMAC),” for more
information.

Table 3-7 shows the syntax for the new and enhanced instructions. As Table 3-7 shows, some ISA_B
opcodes were defined in the M68000 family and others are new.

Table 3-7. V4 New Instruction Summary

Instruction Mnemonic?! Source Destination M68000
ISA_B Extensions

Branch Always bra.l <label> Yes
Branch Conditionally bece.l <label> Yes
Branch to Subroutine bsr.l <label> Yes
Compare cmp.{b,w,l} <ea>y Dx Yes
Compare Address cmpa.w <ea>y Ax Yes
Compare Immediate cmpi.{b,w} #<data> Dx Yes
Instruction Fetch Touch intouch <Ay>

Move 3-Bit Data Quick mov3q.| #<data> <ea>X

Move Data Source to Destination move.{b,w} #<data> d16(Ax) Yes
Move from USP move.| USP AX Yes

MCF547x Reference Manual, Rev. 5

3-20

Freescale Semiconductor

Instruction Set Summary

Table 3-7. V4 New Instruction Summary (Continued)

Instruction Mnemonic! Source Destination M68000
Move to USP move.| Ay USP Yes
Move with Sign Extend mvs.{b,w} <ea>y Dx
Move with Zero-Fill mvz.{b,w} <ea>y Dx
Signed Saturate sats.| Dx
Test and Set an Operand tas.b <ea>X Yes

EMAC Extensions

Move from an Accumulator and Clear movclr.| ACCx Rx No
Copy an Accumulator move.| ACCy ACCx No
Move from Accumulator O and 1 Extensions move.| ACCext01 Rx No
Move from Accumulator 2 and 3 Extensions move.| ACCext23 Rx No
Move to Accumulator 0 and 1 Extensions move.| Ry ACCext01 No
Move to Accumulator 2 and 2 Extensions move.| Ry ACCext23 No

FPU Instructions

Floating-Point Absolute Value fabs.{b,w,l,s,d} <ea>y FPx Yes
Floating-Point Add fadd.{b,w,l,s,d} <ea>y FPx Yes
Floating-Point Branch Conditionally fbcc.{w,[} <label> Yes
Floating-Point Compare femp.{b,w,l,s,d} <ea>y FPx Yes
Floating-Point Divide fdiv.{b,w,l,s,d} <ea>y FPx Yes
Floating-Point Integer fint.{b,w,l,s,d} <ea>y FPx Yes
Floating-Point Integer Round-to-Zero fintrz.{b,w,l,s,d} <ea>y FPx Yes
Move Floating-Point Data Register fmove.{b,w,l,s,d} <ea>y FPx Yes
Move from FPCR fmove.| FPCR <ea>x Yes
Move from FPIAR fmove.| FPIAR <ea>X Yes
Move from FPSR fmove.l FPSR <ea>x Yes
Move from FPCR fmove.l <ea>y FPCR Yes
Move from FPIAR fmove.l <ea>y FPIAR Yes
Move from FPSR fmove.l <ea>y FPSR Yes
Move Multiple Floating Point Data Registers fmovem.d #list <ea>X Yes
<ea>y #list
Floating-Point Multiply fmul.{b,w,l,s,d} <ea>y FPx Yes
Floating-Point Negate fneg.{b,w,l,s,d} <ea>y FPx Yes
Floating-Point No Operation fnop Yes
Restore Internal Floating Point State frestore <ea>y Yes

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor 3-21

Table 3-7. V4 New Instruction Summary (Continued)

Instruction Mnemonic?! Source Destination M68000
Save Internal Floating Point State fsave <ea>X Yes
Floating-Point Square Root fsqrt.{b,w,l,s,d} <ea>y FPx Yes
Floating-Point Subtract fsub.{b,w,l,s,d} <ea>y FPx Yes
Test Floating-Point Operand ftst.{b,w,l,s,d} <ea>y Yes

1 Operand sizes in this column reflect only newly supported operand sizes for existing instructions (Bcc, BRA,
BSR, CMP, CMPA, CMPI, and MOVE)

3.6.2 Instruction Set Summary

Table 3-8 lists user-mode instructions by opcode.

Table 3-8. User-Mode Instruction Set Summary

Instruction Operand Syntax Operand Size Operation
ADD Dy,<ea>x L Source + Destination — Destination
<ea>y,Dx L
ADDA <ea>y,Ax L
ADDI #<data>,Dx L Immediate Data + Destination — Destination
ADDQ #<data>,<ea>x L
ADDX Dy,Dx L Source + Destination + CCR[X] — Destination
AND <ea>y,Dx L Source & Destination — Destination
Dy,<ea>x L
ANDI #<data>, Dx L Immediate Data & Destination — Destination
ASL Dy,Dx L CCR[X,C] « (Dx << Dy) « 0
#<data>,Dx L CCR[X,C] « (Dx << #<data>) «- 0
ASR Dy,Dx L msb — (Dx >> Dy) - CCR[X,C]
#<data>,Dx L msb — (Dx >> #<data>) - CCR[X,C
Bcc <label> B, W, L If Condition True, Then PC + d,, > PC
BCHG Dy,<ea>x B, L ~ (<bit number> of Destination) - CCR[Z] —»
#<data>,<ea>x B, L <bit number> of Destination
BCLR Dy,<ea>x B, L ~ (<bit number> of Destination) - CCR[Z];
#<data>,<ea>x B, L 0 —<bit number> of Destination
BRA <label> B, W, L PC +d,— PC
BSET Dy,<ea>x B, L ~ (<bit number> of Destination) - CCR[Z];
#<data>,<ea>x B, L 1 — <bit number> of Destination
BSR <label> B,W,L SP -4 — SP; nextPC — (SP); PC +d,, > PC
BTST Dy,<ea>x B, L ~ (<bit number> of Destination) - CCR[Z]
#<data>,<ea>x B, L
CLR <ea>X B, W, L 0 — Destination
MCF547x Reference Manual, Rev. 5
3-22 Freescale Semiconductor

Instruction Set Summary

Table 3-8. User-Mode Instruction Set Summary (Continued)

Instruction Operand Syntax Operand Size Operation
CMP <ea>y,Dx B, W, L Destination — Source - CCR
CMPA <ea>y,Ax W, L
CMPI #<data>,Dx B, W, L Destination — Immediate Data - CCR
DIVS/DIVU <ea>y,Dx W, L Destination / Source — Destination
(Signed or Unsigned)
EOR Dy,<ea>x L Source ” Destination — Destination
EORI #<data>,Dx L Immediate Data * Destination — Destination
EXT Dx B->W Sign-Extended Destination — Destination
Dx WL
EXTB Dx B—>L
FABS <ea>y,FPx B,W,L,S,D Absolute Value of Source — FPx
FPy,FPx D
FPx D Absolute Value of FPx — FPx
FADD <ea>y,FPx B,W,L,S,D Source + FPx — FPx
FPy,FPx D
FBcc <label> W, L If Condition True, Then PC + d,, - PC
FCMP <ea>y,FPx B,W,.L,S,D FPx - Source
FPy,FPx D
FDABS <ea>y,FPx B,wW,L,S,D Absolute Value of Source — FPXx; round destination
FPy,FPx D to double
FPx D Absolute Value of FPx — FPx; round destination to
double
FDADD <ea>y,FPx B,wW,L,S,D Source + FPx — FPx; round destination to double
FPy,FPx D
FDDIV <ea>y,FPx B,wW,L,S,D FPx / Source — FPx; round destination to double
FPy,FPx D
FDIV <ea>y,FPx B,W,.L,S,D FPx / Source — FPx
FPy,FPx D
FDMOVE FPy,FPx D Source — Destination; round destination to double
FDMUL <ea>y,FPx B,wW,L,S,D Source * FPx — FPx; round destination to double
FPy,FPx D
FDNEG <ea>y,FPx B,wW,L,S,D - (Source) — FPx; round destination to double
FPy,FPx D
FPx D - (FPX) — FPx; round destination to double
FDSQRT <ea>y,FPx B,w,L,S,D Square Root of Source — FPx; round destination to
FPy,FPx D double
FPx D Square Root of FPx — FPx; round destination to
double
FDSUB <ea>y,FPx B,wW,L,S,D FPx - Source — FPx; round destination to double
FPy,FPx D

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor

3-23

Table 3-8. User-Mode Instruction Set Summary (Continued)

Instruction Operand Syntax Operand Size Operation
FINT <ea>y,FPx B,W,.L,S,D Integer Part of Source — FPx
FPy,FPx D
FPx D Integer Part of FPx — FPx
FINTRZ <ea>y,FPx B,wW,L,S,D Integer Part of Source — FPx; round to zero
FPy,FPx D
FPx D Integer Part of FPx — FPx; round to zero
FMOVE <ea>y,FPx B,wW,L,S,D Source — Destination
FPy,<ea>x B,W,L,S,D
FPy,FPx D
FPcr,<ea>x L FPcr can be any floating point control register:
<ea>y,FPcr L FPCR, FPIAR, FPSR
FMOVEM #list,<ea>x D Listed registers — Destination
<ea>y,#list Source —» Listed registers
FMUL <ea>y,FPx B,W,.L,S,D Source * FPx — FPx
FPy,FPx D
FNEG <ea>y,FPx B,wW,L,S,D - (Source) —» FPx
FPy,FPx D
FPx D - (FPx) —» FPx
FNOP none none PC + 2 —» PC (FPU Pipeline Synchronized)
FSABS <ea>y,FPx B,wW,L,S,D Absolute Value of Source — FPX; round destination
FPy,FPx D to single
FPx D Absolute Value of FPx — FPXx; round destination to
single
FSADD <ea>y,FPx B,wW,L,S,D Source + FPx — FPx; round destination to single
FPy,FPx
FSDIV <ea>y,FPx B,wW,L,S,D FPx / Source — FPx; round destination to single
FPy,FPx D
FSMOVE <ea>y,FPx B,wW,L,S,D Source — Destination; round destination to single
FSMUL <ea>y,FPx B,wW,L,S,D Source * FPx — FPx; round destination to single
FPy,FPx D
FSNEG <ea>y,FPx B,wW,L,S,D - (Source) — FPx; round destination to single
FPy,FPx D
FPx D - (FPx) — FPx; round destination to single
FSQRT <ea>y,FPx B,W,.L,S,D Square Root of Source — FPx
FPy,FPx D
FPx D Square Root of FPx — FPx
FSSQRT <ea>y,FPx B,wW,L,S,D Square Root of Source — FPx; round destination to
FPy,FPx D single
FPx D Square Root of FPx — FPx; round destination to
single
FSSUB <ea>y,FPx B,wW,L,S,D FPx - Source — FPx; round destination to single
FPy,FPx D

MCF547x Reference Manual, Rev. 5

3-24 Freescale Semiconductor

Instruction Set Summary

Table 3-8. User-Mode Instruction Set Summary (Continued)

Instruction Operand Syntax Operand Size Operation
FSUB <ea>y,FPx B,W,L,S,D FPx - Source — FPx
FPy,FPx D
FTST <ea>y B,W,L,S,D Source Operand Tested - FPCC
ILLEGAL none none SP -4 —» SP; PC - (SP) » PC; SP -2 — SP;
SR — (SP); SP — 2 —» SP; Vector Offset — (SP);
(VBR + 0x10) —» PC
JMP <ea>y none Source Address —» PC
JSR <ea>y none SP — 4 — SP; nextPC — (SP); Source —» PC
LEA <ea>y,AX L <ea>y — Ax
LINK Ay #<displacement> W SP -4 — SP; Ay — (SP); SP — Ay, SP +d,, » SP
LSL Dy,Dx L CCR[X,C] < (Dx << Dy) «- 0
#<data>,Dx L CCR[X,C] < (Dx << #<data>) < 0
LSR Dy,Dx L 0 — (Dx >> Dy) —» CCR[X,C]
#<data>,Dx L 0 — (Dx >> #<data>) —» CCR[X,C]
MAC Ry,RxSFACCx W, L ACCx + (Ry * Rx){<<|>>}SF — ACCx
Ry,RxSF<ea>y,Rw,ACCx W, L ACCx + (Ry * Rx){<<|>>}SF — ACCx;
(<ea>y(&MASK)) - Rw
MOV3Q #<data>,<ea>x L Immediate Data — Destination
MOVCLR ACCy,Rx L Accumulator — Destination, 0 — Accumulator
MOVE <ea>y,<ea>X B,wW,L Source — Destination
MACcr,Dx L where MACcr can be any MAC control register:
<ea>y,MACcr L ACCx, ACCext01, ACCext23, MACSR, MASK
MOVE from CCR,Dx W
CCR <ea>y,CCR W
MOVE to CCR
MOVEA <ea>y,Ax WL —>L Source — Destination
MOVEM #list,<ea>x L Listed Registers — Destination
<ea>y,#list Source — Listed Registers
MOVEQ #<data>,Dx B->L Immediate Data — Destination
MSAC Ry,RXxSF,ACCx W, L ACCx - (Ry * Rx){<<|>>}SF — ACCx
Ry,RxSF<ea>y,Rw,ACCx W, L ACCx - (Ry * Rx){<<|>>}SF — ACCXx;
(<ea>y(&MASK)) - Rw
MULS/MULU <ea>y,Dx W*W —> L Source * Destination — Destination
L*L—>L (Signed or Unsigned)
MVS <ea>y,Dx B,.W Source with sign extension — Destination
MVZ <ea>y,Dx B,W Source with zero fill - Destination
NEG Dx L 0 — Destination — Destination
NEGX Dx L 0 — Destination — CCR[X] — Destination
NOP none none PC + 2 — PC (Integer Pipeline Synchronized)

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor

3-25

b -

Table 3-8. User-Mode Instruction Set Summary (Continued)

Instruction Operand Syntax Operand Size Operation
NOT Dx L ~ Destination — Destination
OR <ea>y,Dx L Source | Destination — Destination
Dy,<ea>x L
ORI #<data>,Dx L Immediate Data | Destination — Destination
PEA <ea>y L SP — 4 —» SP; <ea>y —» (SP)
PULSE none none Set PST = 0x4
REMS/REMU <ea>y,Dw:Dx L Destination / Source — Remainder
(Signed or Unsigned)
RTS none none (SP) » PC; SP+4 —» SP
SATS Dx L If CCR[V] == 1;
then if Dx[31] == 0;
then Dx[31:0] = 0x80000000;
else Dx[31:0] = Ox7FFFFFFF;
else Dx[31:0] is unchanged
Scc Dx B If Condition True, Then 1s — Destination;
Else Os — Destination
SUB <ea>y,Dx L Destination - Source — Destination
Dy,<ea>x L
SUBA <ea>y,Ax L
SUBI #<data>,Dx L Destination — Immediate Data — Destination
SUBQ #<data>,<ea>x L
SUBX Dy,Dx L Destination — Source — CCR[X] — Destination
SWAP Dx w MSW of Dx <> LSW of Dx
TAS <ea>x B Destination Tested — CCR;
1 — bit 7 of Destination
TPF none none PC +2— PC
#<data> w PC + 4 — PC
#<data> L PC +6— PC
TRAP #<vector> none 1 — S Bit of SR; SP — 4 — SP; nextPC — (SP);
SP -2 - SP; SR - (SP)
SP — 2 —» SP; Format/Offset — (SP)
(VBR + 0x80 +4*n) — PC, where n is the TRAP
number
TST <ea>y B, W, L Source Operand Tested - CCR
UNLK AX none Ax — SP; (SP) » Ax; SP +4 — SP
WDDATA <ea>y B, W, L Source — DDATA port

Table 3-9 describes supervisor-mode instructions.

MCF547x Reference Manual, Rev. 5

3-26

Freescale Semiconductor

Instruction Execution Timing

Table 3-9. Supervisor-Mode Instruction Set Summary

Instruction Operand Syntax | Operand Size Operation
CPUSHL ic,(Ax) none If data is valid and modified, push cache line; invalidate line
dc,(Ax) if programmed in CACR (synchronizes pipeline)
bc,(Ax)
FRESTORE <ea>y none FPU State Frame — Internal FPU State
FSAVE <ea>x none Internal FPU State — FPU State Frame
HALT none none Halt processor core
INTOUCH Ay none Instruction fetch touch at (Ay)
MOVE from SR SR,Dx W SR — Destination
MOVE from USP USP,Dx L USP — Destination
MOVE to SR <ea>y,SR w Source — SR; Dy or #<data> source only
MOVE to USP Ay,USP L Source —» USP
MOVEC Ry,Rc L Ry — Rc
RTE none none 2 (SP) > SR; 4 (SP) —» PC; SP + 8 »SP
Adjust stack according to format
STOP #<data> none Immediate Data — SR; STOP
WDEBUG <ea>y L Addressed Debug WDMREG Command Executed

3.7

Instruction Execution Timing

The timing data in this section assumes the following:

Execution times for individual instructions make no assumptions concerning the OEP’s ability to
dispatch multiple instructions in one machine cycle. For sequences where instruction pairs are
issued, the execution time of the first instruction defines the execution time of pair; the second
instruction effectively executes in zero cycles.

The OEP is loaded with the opword and all required extension words at the beginning of each
instruction execution. This implies that the OEP spends no time waiting for the IFP to supply
opwords or extension words.

The OEP experiences no sequence-related pipeline stalls. For the V4, the most common example
of this type of stall occurs when a register is modified in the EX engine and a subsequent instruction
generates an address that uses the previously modified register. The second instruction stalls in the
OEP until the previous instruction updates the register. For example:

muls.l #<data>,dO

move. | (a0,d0.1*4),d1
move.l waits 3 cycles for the muls.| to update dO. If consecutive instructions update a register and
use that register as a base of index value with a scale factor of 1 (Xi.I*1) in an address calculation,
a 2-cycle pipeline stall occurs. If the destination register is used as an index register with any other
scale factor (Xi.I*2, Xi.I*4), a 3-cycle stall occurs.

NOTE

Address register results from postincrement and predecrement modes are
available to subsequent instructions without stalls.

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor 3-27

» The OEP can complete all memory accesses without memory causing any stalls. Thus, these
timings assume an infinite, zero-wait state memory attached to the core.

» Operand accesses are assumed to be aligned as follows:
— 16-bit operands are aligned on 0-modulo-2 addresses
— 32-bit operands are aligned on 0-modulo-4 addresses
Operands that do not meet these guidelines are misaligned. Table 3-10 shows how the core
decomposes a misaligned operand reference into a series of aligned accesses.

Table 3-10. Misaligned Operand References

A[1:0] Size Bus Operations Additional C(R/W)?!
x1 Word Byte, Byte 2(1/0) if read
1(0/1) if write
x1 Long Byte, Word, Byte 3(2/0) if read
2(0/2) if write
10 Long Word, Word 2(1/0) if read
1(0/1) if write

Each timing entry is presented as C(r/w), described as follows:

C is the number of processor clock cycles, including all applicable operand fetches and writes, as well as all
internal core cycles required to complete the instruction execution.

r/w is the number of operand reads (r) and writes (w) required by the instruction. An operation performing a
read-modify write function is denoted as (1/1).

3.7.1 MOVE Instruction Execution Timing

The following tables show execution times for the MOVE.{B,W,L} instructions. Table 3-13 shows the
timing for the other generic move operations.

NOTE
In these tables, times using PC-relative effective addressing modes are the
same as using An-relative mode.
ET with {<ea> = (d16,PC)} equals ET with {<ea> = (d16,An)}
ET with {<ea> = (d8,PC,Xi*SF)} equals ET with {<ea> = (d8,An,Xi*SF)}

The (xxx).wl nomenclature refers to both forms of absolute addressing,
(xxx).w and (xxx).l.

Table 3-11 lists execution times for MOVE.{B,W} instructions.
Table 3-11. Move Byte and Word Execution Times

Destination
Source
Rx (AX) (Ax)+ —(AX) (d16,Ax) | (d8,Ax,Xi*SF) (xxx).wl
Dy 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1)
Ay 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1)
(Ay) 1(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 3(1/1) 2(1/1)

MCF547x Reference Manual, Rev. 5

3-28 Freescale Semiconductor

Instruction Execution Timing

Table 3-11. Move Byte and Word Execution Times (Continued)

Destination
Source
Rx (AX) (Ax)+ —(AX) (d16,Ax) | (d8,Ax,Xi*SF) (xxx).wl
(Ay)+ 1(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 3(1/1) 2(1/1)
-(Ay) 1(1/0) 21/1) 2(1/1) 2(1/1) 2(1/1) 3(1/1) 2(1/1)
(d16,Ay) 1(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) — —
(d8, Ay, Xi*SF) 2(1/0) 3(1/1) 3(1/1) 3(1/1) — — —
(xxx).w 1(1/0) 2(1/1) 2(1/1) 2(1/1) — — —
(xxx).1 1(1/0) 2(1/1) 2(1/1) 2(1/1) — — —
(d16,PC) 1(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) — —
(d8,PC Xi*SF) 2(1/0) 3(1/1) 3(1/1) 3(1/1) — — —
HXXX> 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) — —
Table 3-12 lists timings for MOVE.L.
Table 3-12. Move Long Execution Times
Destination
Source
Rx (AX) (Ax)+ —(AX) (d16,Ax) | (d8,Ax,Xi*SF) (xxx).wl
Dy 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1)
Ay 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1)
(Ay) 1(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 3(1/1) 2(1/1)
(Ay)+ 1(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 3(1/1) 2(111)
-(Ay) 1(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 3(1/1) 2(1/1)
(d16,Ay) 1(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) — —
(d8,Ay, Xi*SF) 2(1/0) 3(1/1) 3(1/1) 3(1/1) — — —
(XXX). W 1(1/0) 2(1/1) 2(1/1) 2(1/1) — — —
(xxx).| 1(1/0) 2(1/1) 2(1/1) 2(1/1) — — —
(d16,PC) 1(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) — —
(d8,PC,Xi*SF) 2(1/0) 3(1/1) 3(1/1) 3(1/1) — — —
H<XXC> 1(0/0) 1(0/1) 1(0/1) 1(0/1) — — —

MCF547x Reference Manual, Rev. 5

Table 3-13 gives timings for MOVE.L instructions accessing program-visible EMAC registers, along with
other MOVE.L timings. Execution times for moving ACC or MACSR contents into a destination location
represent the best-case scenario when the store instruction is executed and no load, MAC, or MSAC
instructions are in the EMAC execution pipeline. In general, these store operations take only 1 cycle to
execute, but if preceded immediately by a load, MAC, or MSAC instruction, the EMAC pipeline depth is
exposed and execution time is 3 cycles.

Table 3-19 lists EMAC execution times.

Freescale Semiconductor

3-29

Table 3-13. MAC and Miscellaneous Move Execution Times

Effective Address
Opcode <ea>
Rn (An) (An)+ | —(An) | (d16,An) | (d8,An,Xi*SF) | (xxx).wl HIXXX>
move.| <ea>,ACC 1(0/0) — — — — — — 1(0/0)
move.| <ea>,MACSR 6(0/0) — — — — — — 6(0/0)
move.| <ea>,MASK 5(0/0) — — — — — — 5(0/0)
move.| ACC,Rx 1(0/0) — — — — — — —
move.| MACSR,CCR 1(0/0) — — — — — — —
move.| MACSR,Rx 1(0/0) — — — — — — —
move.| MASK,Rx 1(0/0) — — — — — — —
moveq #imm,Dx — — — — — — — 1(0/0)
mov3q #imm,<ea> 1(0/0) | 1(1/0) | 1(1/0) | 1(2/0) 1(1/0) 2(1/0) 1(1/0) —
mvs <ea>,Dx 1(0/0) | 1(2/0) | 1(1/0) | 1(1/0) 1(1/0) 2(1/0) 1(1/0) 1(0/0)
mvz <ea>,Dx 1(0/0) | 1(12/0) | 1(1/0) | 1(1/0) 1(1/0) 2(1/0) 1(1/0) 1(0/0)

3.7.2 One-Operand Instruction Execution Timing

Table 3-14 shows standard timings for single-operand instructions.
Table 3-14. One-Operand Instruction Execution Times

Effective Address
Opcode | <ea>

Rn (An) (An)+ —(An) | (d16,An) | (d8,An,Xi*SF) | (xxx).wl H#XXX
clr.b <ea> 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1) —
clr.w <ea> 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1) —
clrl <ea> 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1) —
ext.w Dx 1(0/0) — — — — — — —
ext.| Dx 1(0/0) — — — — — — —
extb.| Dx 1(0/0) — — — — — — —
neg.! Dx 1(0/0) — — — — — — —
negx.| Dx 1(0/0) — — — — — — —
not.| Dx 1(0/0) — — — — — — —
sats.| Dx 1(0/0) — — — — — — —
scc Dx 1(0/0) — — — — — — —
swap Dx 1(0/0) — — — — — — —
tas <ea> 1(1/1) 1(1/1) 1(1/1) 1(1/1) 1(1/1) 2(1/1) 1(1/1) —
tst.b <ea> 1(0/0) 1(1/0) 1(1/0) 1(1/0) 1(1/0) 2(1/0) 1(1/0) 1(0/0)
tst.w <ea> 1(0/0) 1(1/0) 1(1/0) 1(1/0) 1(1/0) 2(1/0) 1(1/0) 1(0/0)
tst.l <ea> 1(0/0) 1(1/0) 1(1/0) 1(1/0) 1(1/0) 2(1/0) 1(1/0) 1(0/0)

MCF547x Reference Manual, Rev. 5

3-30 Freescale Semiconductor

3.7.3 Two-Operand Instruction Execution Timing

Table 3-15 shows standard timings for double operand instructions.

Table 3-15. Two-Operand Instruction Execution Times

Instruction Execution Timing

Effective Address

Opcode <ea>

Rn (An) (An)+ | —(An) | (d16,An) | (d8,An,Xi*SF) | (xxx).wl | #<xxx>
add.| <ea>,Rx 1(0/0) | 1(1/0) | 1(1/0) | 1(1/0) 1(1/0) 2(1/0) 1(1/0) 1(0/0)
add.| Dy,<ea> — 1(1/1) | 1(2/1) | 1(1/1) 1(1/1) 2(1/1) 1(1/1) —
addi.l #imm,Dx 1(0/0) — — — — — — —
addaq.| #imm,<ea> 1(0/0) | 1(1/1) | 2(1/1) | 1(1/1) 1(1/1) 2(1/1) 1(1/1) —
addx.| Dy,Dx 1(0/0) — — — — — — —
and.| <ea>,Rx 1(0/0) | 1(2/0) | 1(1/0) | 1(1/0) 1(1/0) 2(1/0) 1(1/0) 1(0/0)
and.| Dy,<ea> — 1(1/1) | 1(2/1) | 1(1/1) 1(1/1) 2(1/1) 1(1/1) —
andi.l #imm,Dx 1(0/0) — — — — — — —
asl.| <ea>,Dx 1(0/0) — — — — — — 1(0/0)
asr.| <ea>,Dx 1(0/0) — — — — — — 1(0/0)
bchg Dy,<ea> 2(0/0) | 2(1/1) | 2(1/1) | 2(1/1) 2(1/1) 3(1/1) 2(1/1) —
bchg #imm,<ea> 2(0/0) | 2(1/1) | 2(2/1) | 2(1/1) 2(1/1) — — —
belr Dy,<ea> 2(0/0) | 2(2/1) | 2(1/1) | 2(1/1) 2(1/1) 3(1/1) 2(1/1) —
bclr #imm,<ea> 2(0/0) | 2(1/1) | 2(1/1) | 2(1/1) 2(1/1) — — —
bset Dy,<ea> 2(0/0) | 2(1/1) | 2(1/1) | 2(1/1) 2(1/1) 3(1/1) 2(1/1) —
bset #imm,<ea> 2(0/0) | 2(1/1) | 2(2/1) | 2(1/1) 2(1/1) — — —
btst Dy,<ea> 1(0/0) | 1(1/0) | 1(1/0) | 1(1/0) 1(1/0) 2(1/0) 1(1/0) —
btst #imm,<ea> 1(0/0) | 1(1/0) | 1(1/0) | 1(1/0) 1(1/0) — — —
cmp.b <ea>,Rx 1(0/0) | 1(1/0) | 1(1/0) | 1(1/0) 1(1/0) 2(1/0) 1(1/0) 1(0/0)
cmp.w <ea>,Rx 1(0/0) | 1(1/0) | 1(1/0) | 1(1/0) 1(1/0) 2(1/0) 1(1/0) 1(0/0)
cmp.| <ea>,Rx 1(0/0) | 1(2/0) | 1(1/0) | 1(1/0) 1(1/0) 2(1/0) 1(1/0) 1(0/0)
cmpi.b #imm,Dx 1(0/0) — — — — — — —
cmpi.w #imm,Dx 1(0/0) — — — — — — —
cmpi.l #imm,Dx 1(0/0) — — — — — — —
divs.w <ea>,Dx 20(0/0) | 20(1/0) | 20(1/0) | 20(1/0) | 20(1/0) 21(1/0) 20(1/0) 20(0/0)
divu.w <ea>,Dx 20(0/0) | 20(1/0) | 20(1/0) | 20(1/0) | 20(1/0) 21(1/0) 20(1/0) | 20(0/0)
divs.| <ea>,Dx 35(0/0) | 35(1/0) | 35(1/0) | 35(1/0) | 35(1/0) — — —
divu.l <ea>,Dx 35(0/0) | 35(1/0) | 35(1/0) | 35(1/0) | 35(1/0) — — —
eor.l Dy,<ea> 1(0/0) | 1(1/1) | 1(1/1) | 1(2/1) 1(1/1) 2(1/1) 1(1/1) —
eori.l #imm,Dx 1(0/0) — — — — — — —
lea <ea>,Ax — 1(0/0) — — 1(0/0) 2(0/0) 1(0/0) —
Isl.I <ea>,Dx 1(0/0) — — — — — — 1(0/0)

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor

3-31

Table 3-15. Two-Operand Instruction Execution Times (Continued)

Effective Address
Opcode <ea>
Rn (An) (An)+ | —(An) | (d16,An) | (d8,An,Xi*SF) | (xxx).wl HIXXX>
Isr.| <ea>,Dx 1(0/0) — — — — — — 1(0/0)
mac.w Ry,Rx 1(0/0) — — — — — — —
mac.| Ry,Rx 3(0/0) — — — — — — —
msac.w Ry,Rx 1(0/0) — — — — — — —
msac.| Ry,Rx 3(0/0) — — — — — — —
mac.w Ry,Rx,ea,Rw — 1(1/0) | 1(1/0) | 1(1/0) 1(1/0) — — —
mac.| Ry,Rx,ea,Rw — 3(1/0) | 3(1/0) | 3(1/0) 3(1/0) — — —
msac.w Ry,Rx,ea,Rw — 1(1/0) | 1(1/0) | 1(1/0) 1(1/0) — — —
msac.| Ry,Rx,ea,Rw — 3(1/0) | 3(1/0) | 3(1/0) 3(1/0) — — —
muls.w <ea>,Dx 3(0/0) | 3(1/0) | 3(1/0) | 3(1/0) 3(1/0) 4(1/0) 3(1/0) 3(0/0)
mulu.w <ea>,Dx 3(0/0) | 3(1/0) | 3(1/0) | 3(1/0) 3(1/0) 4(1/0) 3(1/0) 3(0/0)
muls.| <ea>,Dx 5(0/0) | 5(1/0) | 5(1/0) | 5(1/0) 5(1/0) — — —
mulu.| <ea>,Dx 5(0/0) | 5(1/0) | 5(1/0) | 5(1/0) 5(1/0) — — —
or.l <ea>,Rx 1(0/0) | 1(1/0) | 1(1/0) | 1(2/0) 1(1/0) 2(1/0) 1(1/0) 1(0/0)
or.l Dy,<ea> — 1(1/1) | 1(2/1) | 1(1/1) 1(1/1) 2(1/1) 1(1/1) —
or.l #imm,Dx 1(0/0) — — — — — — —
rems.! <ea>,Dx 35(0/0) | 35(1/0) | 35(1/0) | 35(1/0) | 35(1/0) — — —
remu.l <ea>,Dx 35(0/0) | 35(1/0) | 35(1/0) | 35(1/0) | 35(1/0) — — —
sub.l <ea>,Rx 1(0/0) | 1(1/0) | 1(1/0) | 1(1/0) 1(1/0) 2(1/0) 1(1/0) 1(0/0)
sub.| Dy,<ea> — 1(1/1) | 1(2/1) | 1(1/1) 1(1/1) 2(1/1) 1(1/1) —
subi.l #imm,Dx 1(0/0) — — — — — — —
subq.! #imm,<ea> 1(0/0) | 1(1/1) | 21(1/1) | 1(1/1) 1(1/1) 2(1/1) 1(1/1) —
subx. Dy,Dx 1(0/0) — — — — — — —

3.7.4 Miscellaneous Instruction Execution Timing

Table 3-16 lists timings for miscellaneous instructions.

Table 3-16. Miscellaneous Instruction Execution Times

Effective Address
Opcode <ea>
Rn (An) (An)+ | —(An) | (d16,An) | (d8,An,Xi*SF) | (XxX).wl | #<xxx>

cpushl (AX) — 9(0/1) — — — — — _
intouch (Ay) — 19(1/0)

link.w Ay #mm 2(0/11) — — — — — — —
move.w | CCR,Dx 1(0/0) — — — — — — —
move.w <ea>,CCR 1(0/0) — — — — — — 1(0/0)

MCF547x Reference Manual, Rev. 5

3-32 Freescale Semiconductor

Instruction Execution Timing

Table 3-16. Miscellaneous Instruction Execution Times (Continued)

Effective Address
Opcode <ea>

Rn (An) (An)+ | —(An) | (d16,An) | (d8,An,Xi*SF) | (xxx).wl | #<xxx>
move.w SR,Dx 1(0/0) — — — — — — —
move.w <ea>,SR 4(0/0) — — — — — — 4(0/0)
movec Ry,Rc 20(0/1) — — — — — — —
movem.| 1 | <ea> &list — n(n/0) — — n(n/0) — — —
movem.| | &list,<ea> — n(0/n) — — n(0/n) — — —
nop 6(0/0) — — — — — — —
pea <ea> — 1(0/1) — — 1(0/1)? 2(0/1)3 1(0/1) —
pulse 1(0/0) — — — — — — —
stop #Hmm — — — — — — — 6(0/0)*
trap #imm — — — — — — — 18(1/2)
tpf 1(0/0) — — — — — — —
tpf.w 1(0/0) — — — — — — —
tpf.l 1(0/0) — — — — — — —
unlk Ax 1(1/0) — — — — — — —
wddata.l |<ea> — 1(1/0) 1(1/0) | 1(1/0) 1(1/0) 2(1/0) 1(1/0) —
wdebug.l |<ea> — 3(2/0) — — 3(2/0) — — —
1 nis the number of registers moved by the MOVEM opcode.
2 PEA execution times are the same for (d16,PC).
3 PEA execution times are the same for (d8,PC,Xi*SF).
4

3.7.5

Table 3-17 shows general branch instruction timing.
Table 3-17. General Branch Instruction Execution Times

Branch Instruction Execution Timing

The execution time for STOP is the time required until the processor begins sampling continuously for interrupts.

Effective Address
Opcode | <ea>
Rn (An) (An)+ —(An) (d16,An) | (d8,An,Xi*SF) | (xxx).wl H#IXXX>

bra — — — — 1(0/1)* — — —
bsr — — — — 1(0/1)* — — —
jmp <ea> — 5(0/0) — — 5(0/0)* 6(0/0) 1(0/0)* —
jsr <ea> — 5(0/1) — — 5(0/1) 6(0/1) 1(0/1)* —
rte — — 15(2/0) — — — — —
rts — — 2(1/0)? — — — — —

9(1/0)3

8(1/0)*

1 Assumes branch acceleration. Depending on the pipeline status, execution times may vary from 1 to 3 cycles.

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor

3-33

2 If predicted correctly by the hardware return stack.
3 |f mispredicted by the hardware return stack.
4 If not predicted by the hardware return stack.

Table 3-18 shows timing for Bcc instructions.
Table 3-18. Bcc Instruction Execution Times

Branch Cache Prediction Table Predicted
Opcode Correctly Predicts . Correctly as Predicted Incorrectly
Correctly Predicts Taken
Taken Not Taken
bce 0(0/0) 1(0/0) 1(0/0) 8(0/0)

3.7.6 EMAC Instruction Execution Times

Table 3-19 specifies instruction execution times associated with the enhanced multiply-accumulate
(EMAC) execute engine.

Table 3-19. EMAC Instruction Execution Times

Effective Address

Opcode e Rn (An) (An)+ | —(An) Egigég Eggﬁgi:ég XXX.WI | #XXX
mac.| Ry,Rx,ACCx 1(0/0) — — — — — — —
mac.| Ry,Rx,<ea>,Rw,ACCx — 1(12/0) | 1(1/0) | 1(1/0) 1(1/0)* — — —
mac.w Ry,Rx,ACCx 1(0/0) — — — — — — —
mac.w Ry,Rx,<ea>,Rw,ACCx — 1(1/0) | 1(2/0) | 1(1/0) 1(1/0)1 — — —
mov.| <ea>y,ACCx 1(0/0) — — — — — — 1(0/0)
mov.| ACCy,ACCx 1(0/0) — — — — — — —
mov.| <ea>y,MACSR 8(0/0) — — — — — — 8(0/0)
mov.| <ea>y,MASK 7(0/0) — — — — — — 7(0/0)
mov.| <ea>y,ACCext01 1(0/0) — — — — — — 1(0/0)
mov.| <ea>y,ACCext23 1(0/0) — — — — — — 1(0/0)
mov.l ACCx,<ea>x 10002 | — — — — — — —
mov.| MACSR,<ea>x 1(0/0) — — — — — — —
mov.| MASK,<ea>x 1(0/0) — — — — — — —
mov.| ACCext01,<ea>x 1(0/0) — — — — — — —
mov.| ACCext23,<ea>x 1(0/0) — — — — — — —
msac.| Ry,Rx,ACCx 1(0/0) — — — — — — —
msac.| Ry,Rx,<ea>,Rw,ACCx — 1(1/0) | 1(2/0) | 1(1/0) 1(1/0)* — — —
msac.w Ry,Rx,ACCx 1(0/0) — — — — — — —
msac.w Ry,Rx,<ea>Rw,ACCx — 1(1/0) | 1(1/0) | 1(2/0) | 1(1/0)* — — —
muls.| <ea>y,Dx 4(0/0) | 4(1/0) | 4(1/0) | 4(1/0) 4(1/0) — — —
muls.w <ea>y,Dx 4(0/0) | 4(1/0) | 4(1/0) | 4(1/0) 4(1/0) 5(1/0) 4(1/0) | 4(0/0)

MCF547x Reference Manual, Rev. 5

3-34 Freescale Semiconductor

Instruction Execution Timing

Table 3-19. EMAC Instruction Execution Times (Continued)

Effective Address
Opcode <ea>y (d16,An) | (d8,An,Xi*SF)
Rn (An) (An)+ | —(An) (d16.PC) (d8.PC.Xi*SF) XXX.WI | #XxxX
mulu.l <ea>y,Dx 4(0/0) | 4(1/0) | 4(1/0) | 4(1/0) 4(1/0) — — —
mulu.w <ea>y,Dx 4(0/0) | 4(1/0) | 4(1/0) | 4(1/0) 4(1/0) 5(1/0) 4(1/0) | 4(0/0)

1 Effective address of (d16,PC) not supported.

2 Storing the accumulator requires 1 additional clock cycle when saturation is enabled, or fractional rounding is performed
(MACSR[7:4] = 1---, -11-, --11).

Execution times for moving the contents of the ACC, ACCext[01,23], MACSR, or MASK into a
destination location <ea>x in this table represent the best-case scenario when the store is executed and no
load, copy, MAC, or MSAC instructions are in the EMAC execution pipeline. In general, these store
operations require only a single cycle for execution, but if preceded immediately by a load, copy, MAC,
or MSAC instruction, the depth of the EMAC pipeline is exposed and the execution time is 4 cycles.

3.7.7 FPU Instruction Execution Times

Table 3-20 specifies the instruction execution times associated with the FPU execute engine.
Table 3-20. FPU Instruction Execution Times® 2

Effective Address <ea>
Opcode Format

FPn Dn (An) (An)+ | —(An) (dq6,AN) (d16.PC)
fabs <ea>y,FPx 1(0/0) | 1(0/0) 1(1/0) 1(1/0) | 1(2/0) 1(1/0) 1(1/0)
fadd <ea>y,FPx 4(0/0) | 4(0/0) 4(1/0) 4(1/0) | 4(1/0) 4(1/0) 4(1/0)
fbce <label> — — — — — — 2(0/0) if correct,

9(0/0) if incorrect

fcmp <ea>y,FPx 4(0/0) | 4(0/0) 4(1/0) 4(1/0) | 4(1/0) 4(1/0) 4(1/0)
fdiv <ea>y,FPx | 23(0/0) | 23(0/0) | 23(1/0) | 23(1/0) | 23(1/0) | 23(1/0) 23(1/0)
fint <ea>y,FPx 4(0/0) | 4(0/0) 4(1/0) 4(1/0) | 4(1/0) 4(1/0) 4(1/0)
fintrz <ea>y,FPx 4(0/0) | 4(0/0) 4(1/0) 4(1/0) | 4(1/0) 4(1/0) 4(1/0)
fmove <ea>y,FPx 1(0/0) | 1(0/0) 1(1/0) 1(1/0) | 1(1/0) 1(1/0) 1(1/0)
fmove FPy,<ea>x — 2(0/1) 2(0/1) 2(0/1) | 2(0/1) 2(0/1) —
fmove <ea>y,FP*R — 6(0/0) 6(1/0) 6(1/0) | 6(1/0) 6(1/0) 6(1/0)
fmove FP*R,<ea>x — 1(0/0) 1(0/1) 1(0/1) | 1(0/1) 1(0/1) —
fmovem? <ea>y,#list — — 2n(2n/0) — — 2n(2n/0) 2n(2n/0)
fmovem® 4 | #list,<ea>x — — | 1+2n(0/2n)| — — | 1+2n(0/2n) —
fmul <ea>y,FPx 4(0/0) | 4(0/0) 4(1/0) 4(1/0) | 4(1/0) 4(1/0) 4(1/0)
fneg <ea>y,FPx 1(0/0) | 1(0/0) 1(1/0) 1(1/0) | 1(12/0) 1(1/0) 1(1/0)
fnop — — — — — — 2(0/0)
frestore <ea>y — — 6(4/0) — — 6(4/0) 6(4/0)

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor 3-35

Table 3-20. FPU Instruction Execution Times® 2 (Continued)

Effective Address <ea>
Opcode Format
FPn Dn (An) (An)+ | —(An) (dq6,AN) (d16.PC)
fsave <ea>X — — 7(0/3) — — 7(0/3) —
fsqrt <ea>y,FPx | 56(0/0) | 56(0/0) | 56(1/0) | 56(1/0) | 56(1/0) | 56(1/0) 56(1/0)
fsub <ea>y,FPx 4(0/0) | 4(0/0) 4(1/0) 4(1/0) | 4(1/0) 4(1/0) 4(1/0)
ftst <ea>y,FPx 1(0/0) | 1(0/0) 1(1/0) 1(1/0) | 1(1/0) 1(1/0) 1(1/0)

1 Add 1(1/0) for an external read operand of double-precision format for all instructions except FMOVEM, and

1(0/1) for FMOVE FPy,<ea>x when the destination is double-precision.

If the external operand is an integer format (byte, word, or longword), there is a 4-cycle conversion time that
must be added to the basic execution time.

For FMOVEM, n refers to the number of registers being moved.

If any exceptions are enabled, the execution time for FMOVE FPy,<ea>x increases by 1 cycle. If the BSUN
exception is enabled, the execution time for FBcc increases by one cycle.

2

3.8 Exception Processing Overview

Exception processing for ColdFire processors is streamlined for performance. Differences from previous
ColdFire Family processors include the following:

* Aninstruction restart model for translation (TLB miss) and access faults. This new functionality
extends the existing ColdFire access error fault vector and exception stack frames.

» Use of separate system stack pointers for user and supervisor modes.

Previous ColdFire processors use an instruction restart exception model but require additional software
support to recover from certain access errors.

Exception processing can be defined as the time from the detection of the fault condition until the fetch of
the first handler instruction has been initiated. It consists of the following four major steps:

1. The processor makes an internal copy of the status register (SR) and then enters supervisor mode
by setting SR[S] and disabling trace mode by clearing SR[T]. The occurrence of an interrupt
exception also clears SR[M] and sets the interrupt priority mask, SR[I] to the level of the current
interrupt request.

2. The processor determines the exception vector number. For all faults except interrupts, the
processor bases this calculation on exception type. For interrupts, the processor performs an
interrupt acknowledge (IACK) bus cycle to obtain the vector number from peripheral. The IACK
cycle is mapped to a special acknowledge address space with the interrupt level encoded in the
address.

The processor saves the current context by creating an exception stack frame on the system stack.
As aresult, the exception stack frame is created at a 0-modulo-4 address on top of the system stack
pointed to by the supervisor stack pointer (SSP). As shown in Figure 3-15, the CF4e processor uses
the same fixed-length stack frame as previous ColdFire Versions with additional fault status (FS)
encodings to support the MMU. In some exception types, the program counter (PC) in the
exception stack frame contains the address of the faulting instruction (fault); in others the PC
contains the next instruction to be executed (next). (Note that previous ColdFire processors support
a single stack pointer in the A7 address register.)

MCF547x Reference Manual, Rev. 5

3-36 Freescale Semiconductor

Exception Processing Overview

If the exception is caused by an FPU instruction, the PC contains the address of either the next
floating-point instruction (nextFP) if the exception is pre-instruction, or the faulting instruction
(fault) if the exception is post-instruction.
3. The processor acquires the address of the first instruction of the exception handler. The instruction
address is obtained by fetching a value from the exception table at the address in the vector base

register. The index into the table is calculated as 4 x vector_number. When the index value is

generated, the vector table contents determine the address of the first instruction of the desired

handler. After the fetch of the first opcode of the handler is initiated, exception processing

terminates and normal instruction processing continues in the handler.

The vector base register described in the ColdFire Programmers Reference Manual, holds the base address
of the exception vector table in memory. The displacement of an exception vector is added to the value in
this register to access the vector table. VBR[19-0] are not implemented and are assumed to be zero, forcing
the vector table to be aligned on a 0-modulo-1-Mbyte boundary.

ColdFire processors support a 1,024-byte vector table aligned on any 0-modulo-1 Mbyte address
boundary; see Table 3-21. The table contains 256 exception vectors, the first 64 of which are defined by
Freescale. The rest are user-defined interrupt vectors.

Table 3-21. Exception Vector Assignments

Vector Numbers | Vector Offset (Hex) | Stacked Program Counter?! Assignment
0 000 — Initial supervisor stack pointer
1 004 — Initial program counter
2 008 Fault Access error
3 oocC Fault Address error
4 010 Fault lllegal instruction
5 014 Fault Divide by zero
6-7 018-01C — Reserved
8 020 Fault Privilege violation
9 024 Next Trace
10 028 Fault Unimplemented line-a opcode
11 02C Fault Unimplemented line-f opcode
12 030 Next Non-PC breakpoint debug interrupt
13 034 Next PC breakpoint debug interrupt
14 038 Fault Format error
15 03C Next Uninitialized interrupt
16-23 040-05C — Reserved
24 060 Next Spurious interrupt
25-31 064-07C Next Level 1-7 autovectored interrupts
32-47 080-0BC Next Trap #0-15 instructions

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor

3-37

Table 3-21. Exception Vector Assighments (Continued)

Vector Numbers | Vector Offset (Hex) | Stacked Program Counter’ Assignment
48 0CO Fault Floating-point branch on unordered
condition
49 0C4 NextFP or Fault Floating-point inexact result
50 0Cs8 NextFP Floating-point divide-by-zero
51 oCccC NextFP or Fault Floating-point underflow
52 0DO NextFP or Fault Floating-point operand error
53 0oD4 NextFP or Fault Floating-point overflow
54 0oD8 NextFP or Fault Floating-point input not-a-number (NAN)
55 obC NextFP or Fault Floating-point input denormalized
number
56-60 OEO-OFO0 — Reserved
61 OF4 Fault Unsupported instruction
6263 OF8-0FC — Reserved
64-255 100-3FC Next User-defined interrupts

L ‘Fault’ refers to the PC of the faulting instruction. ‘Next’ refers to the PC of the instruction immediately after the

faulting instruction. NextFP’ refers to the PC of the next floating-point instruction.

ColdFire processors inhibit sampling for interrupts during the first instruction of all exception handlers.
This allows any handler to effectively disable interrupts, if necessary, by raising the interrupt mask level
in the SR.

3.8.1 Exception Stack Frame Definition

The first longword of the exception stack frame, Figure 3-15, holds the 16-bit format/vector word (F/V)
and 16-bit status register. The second holds the 32-bit program counter address of the faulted or interrupted
instruction.

31 28 27 26 25 18 17 16 15 0
A7— FORMAT FS[3-2] VEC FS[1-0] STATUS REGISTER
+ 0x04 PROGRAM COUNTER [31:0]

Figure 3-15. Exception Stack Frame

Table 3-22 describes F/V fields. FS encodings added to support the CF4e MMU are noted.

MCF547x Reference Manual, Rev. 5

3-38 Freescale Semiconductor

Exception Processing Overview

Table 3-22. Format/Vector Word

Bits Name Description
31-28 FORMAT | Format field. Written with a value of {4,5,6,7} by the processor indicating a 2-longword frame format.
FORMAT records any longword stack pointer misalignment when the exception occurred.
A7 at Exception A7 at First Instruction Format
Bits 1-0 of Handler
00 Original A7-8 0100
01 Original A7-9 0101
10 Original A7-10 0110
11 Original A7-11 0111
27-26 FS[3:2] Fault status. Defined for access and address errors and for interrupted debug service routines.
0000 Not an access or address error nor an interrupted debug service routine
0001 Reserved
0010 Interrupt during a debug service routine for faults other than access errors. 1 [
0011 Reserved
0100 Error (for example, protection fault) on instruction fetch
0101 TLB miss on opword of instruction fetch (New in CF4e)
0110 TLB miss on extension word of instruction fetch (New in CF4e)
0111 IFP access error while executing in emulator mode (New in CF4e)
1000 Error on data write
1001 Error on attempted write to write-protected space
1010 TLB miss on data write (New in CF4e)
1011 Reserved
1100 Error on data read
1101 Attempted read, read-modify-write of protected space (New in CF4e)
1110 TLB miss on data read, or read-modify-write (New in CF4e)
1111 OEP access error while executing in emulator mode (New in CF4e)
25-18 VEC Vector number. Defines the exception type. It is calculated by the processor for internal faults and is
supplied by the peripheral for interrupts. See Table 3-21.
17-16 FS[1:0] |See bits 27-26.

1 This generally refers to taking an 1/O interrupt during a debug service routine but also applies to other fault types. If an access
error occurs during a debug service routine, FS is set to 0111 if it is due to an instruction fetch or to 1111 for a data access. This
applies only to access errors with the MMU present. If an access error occurs without an MMU, FS is set to 0010.

3.8.2

Processor Exceptions

Table 3-23 describes CF4e exceptions. Note that if a ColdFire processor encounters any fault while
processing another fault, it immediately halts execution with a catastrophic fault-on-fault condition. A
reset is required to force the processor to exit this halted state.

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor

3-39

Table 3-23. Processor Exceptions

Type

Description

Access error

If the MMU is disabled, access errors are reported only in conjunction with an attempted store to
write-protected memory. Thus, access errors associated with instruction fetch or operand read accesses are
not possible. The Version 4 processor, unlike the Version 2 and 3 processors, updates the condition code
register if a write-protect error occurs during a CLR or MOV3Q operation to memory.

accesses that fault (that is, terminated with a transfer error acknowledge) generate an access error
exception. MMU TLB misses and access violations use the same fault. If the MMU is enabled, all TLB misses
and protection violations generate an access error exception. To determine if a fault is due to a TLB miss or
another type of access error, new FS encodings (described in Table 3-22) signal TLB misses on the following:
« Instruction fetch

* Instruction extension fetch

+ Data read

 Data write

Address error

An address error is caused by an attempted execution transferring control to an odd instruction address (that
is, if bit 0 of the target address is set), an attempted use of a word-sized index register (Xi.w) or by an
attempted execution of an instruction with a full-format indexed addressing mode.

If an address error occurs on a JSR instruction, the Version 4 processor first pushes the return address onto
the stack and then calculates the target address.

On Version 2 and 3 processors, the target address is calculated then the return address is pushed on stack.
If an address error occurs on an RTS instruction, the Version 4 processor preserves the original return PC
and writes the exception stack frame above this value. On Version 2 and 3 processors, the faulting return PC
is overwritten by the address error stack frame.

lllegal
instruction

The scope of illegal instruction detection is implementation-specific across the generations of ColdFire cores.
For the CF4e core, the complete 16-bit opcode is decoded and this exception is generated if execution of an
unsupported instruction is attempted. Additionally, attempting to execute an illegal line A or line F opcode
generates unique exception types: vectors 10 and 11, respectively. ColdFire processors do not provide illegal
instruction detection on extension words of any instruction, including MOVEC. Attempting to execute an
instruction with an illegal extension word causes undefined results.

Divide-by-zero

Attempting to divide by zero causes an exception (vector 5, offset = 0x014).

Privilege
violation

Caused by attempted execution of a supervisor mode instruction while in user mode. The ColdFire
Programmer’s Reference Manual lists supervisor- and user-mode instructions.

Trace exception

Trace mode, which allows instruction-by-instruction tracing, is enabled by setting SR[T].

If SR[T] is set, instruction completion (for all but the STOP instruction) signals a trace exception.The STOP

instruction has the following effects:

1 The instruction before the STOP executes and then generates a trace exception. In the exception stack
frame, the PC points to the STOP opcode.

2 When the trace handler is exited, the STOP instruction is executed, loading the SR with the immediate
operand from the instruction.

3 The processor then generates a trace exception. The PC in the exception stack frame points to the
instruction after STOP, and the SR reflects the value loaded in the previous step.

If the processor is not in trace mode and executes a STOP instruction where the immediate operand sets

SR[T], hardware loads the SR and generates a trace exception. The PC in the exception stack frame points

to the instruction after STOP, and the SR reflects the value loaded in step 2. Note that because ColdFire

processors do not support hardware stacking of multiple exceptions, it is the responsibility of the operating

system to check for trace mode after processing other exception types. For example, when a TRAP

instruction executes in trace mode, the processor initiates the TRAP exception and passes control to the

corresponding handler. If the system requires a trace exception, the TRAP exception handler must check for

this condition (SR[15] in the exception stack frame set) and pass control to the trace handler before returning

from the original exception.

MCF547x Reference Manual, Rev. 5

3-40

Freescale Semiconductor

Exception Processing Overview

Table 3-23. Processor Exceptions (Continued)

Type

Description

Unimplemented
line-a opcode

A line-a opcode results when bits 15-12 of the opword are 1010. This exception is generated by the
attempted execution of an undefined line-a opcode.

Unimplemented
line-f opcode

A line-f opcode results when bits 15-12 of the opword are 1111. This exception is generated under the
following conditions:

* When attempting to execute an undefined line-f opcode.

* When attempting to execute an FPU instruction when the FPU has been disabled in the CACR.

Debug interrupt

The debug interrupt exception is caused by a hardware breakpoint register trigger. Rather than generating
an IACK cycle, the processor internally calculates the vector number (12 or 13, depending on the type of
breakpoint trigger). Additionally, SR[M,] are unaffected by the interrupt.

Separate exception vectors are provided for PC breakpoints and for address/data breakpoints. In the case of
a two-level trigger, the last breakpoint determines the vector. The two unique entries occur when a PC
breakpoint generates the 0x034 vector. In case of a two-level trigger, the last breakpoint event determines
the vector. See Chapter 8, “Debug Support,” for more information.

Format error

When an RTE instruction executes, the processor first examines the 4-bit format field to validate the frame

type. For a ColdFire processor, attempted execution of an RTE where the format is not equal to {4, 5, 6, 7}

generates a format error. The exception stack frame for the format error is created without disturbing the

original exception frame and the stacked PC points to RTE. The selection of the format value provides limited

debug support for porting code from M68000 applications. On M68000 Family processors, the SR was at the

top of the stack. Bit 30 of the longword addressed by the system stack pointer is typically zero. Attempting an

RTE using this old format generates a format error on a ColdFire processor. If the format field defines a valid

type, the processor does the following:

1 Reloads the SR operand.

2 Fetches the second longword operand.

3 Adjusts the stack pointer by adding the format value to the auto-incremented address after the first
longword fetch.

4 Transfers control to the instruction address defined by the second longword operand in the stack frame.

When the processor executes a FRESTORE instruction, if the restored FPU state frame contains a

non-supported value, execution is aborted and a format error exception is generated.

Trap Executing a TRAP instruction always forces an exception and is useful for implementing system calls. The
trap instruction may be used to change from user to supervisor mode.
Interrupt Please refer to Chapter 13, “Interrupt Controller.”
exception

Reset exception

Asserting the reset input signal (RSTI) causes a reset exception, which has the highest exception priority and
provides for system initialization and recovery from catastrophic failure. When assertion of RSTI is
recognized, current processing is aborted and cannot be recovered. The reset exception places the
processor in supervisor mode by setting SR[S] and disables tracing by clearing SR[T]. It clears SR[M] and
sets SR[I] to the highest level (Ob111, priority level 7). Next, VBR is cleared. Configuration registers
controlling operation of all processor-local memories are invalidated, disabling the memories.

Note: Implementation-specific supervisor registers are also affected at reset.

After RSTI is negated, the processor waits 16 cycles before beginning the reset exception process. During
this time, certain events are sampled, including the assertion of the debug breakpoint signal. If the processor
is not halted, it initiates the reset exception by performing two longword read bus cycles. The longword at
address 0 is loaded into the stack pointer and the longword at address 4 is loaded into the PC. After the initial
instruction is fetched from memory, program execution begins at the address in the PC. If an access error or
address error occurs before the first instruction executes, the processor enters a fault-on-fault halted state.

Unsupported
instruction
exception

If the CF4e attempts to execute a valid instruction but the required optional hardware module is not present
in the OEP, a non-supported instruction exception is generated (vector 0x61). Control is then passed to an
exception handler that can then process the opcode as required by the system.

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor

3-41

3.9 Precise Faults

To support a demand-paged virtual memory environment, all memory references require precise,
recoverable faults. The ColdFire instruction restart mechanism ensures that a faulted instruction restarts
from the beginning of execution; that is, no internal state information is saved when an exception occurs
and none is restored when the handler ends. Given the PC address defined in the exception stack frame,
the processor reestablishes program execution by transferring control to the given location as part of the
RTE (return from exception) instruction.

The instruction restart recovery model requires program-visible register changes made during execution
to be undone if that instruction subsequently faults.

The Version 4 (and later) OEP structure naturally supports this concept for most instructions;
program-visible registers are updated only in the final OEP stage when fault collection is complete. If any
type of exception occurs, pending register updates are discarded.

For V4 cores and later, most single-cycle instructions already support precise faults and instruction restart.
Some complex instructions do not. Consider the following memory-to-memory move:

mov . 1 A+, (AX)+ # copy 4 bytes from source to destination
On a Version 4 processor, this instruction takes one cycle to read the source operand (Ay) and one to write

the data into Ax. Both the source and destination address pointers are updated as part of execution.
Table 3-24 lists the operations performed in execute stage (EX).

Table 3-24. OEP EX Cycle Operations

EX Cycle Operations
1 Read source operand from memory @ (Ay), update Ay, new Ay = old Ay + 4
2 Write operand into destination memory @ (Ax), update Ax, new Ax = old Ax + 4, update CCR

A fault detected with the destination memory write is reported during the second cycle. At this point,
operations performed in the first cycle are complete, so if the destination write takes any type of access
error, Ay is updated. After the access error handler executes and the faulting instruction restarts, the
processor’s operation is incorrect because the source address register has an incorrect (post-incremented)
value.

To recover the original state of the programming model for all instructions, the CF4e CPU adds the needed
hardware to support full register recovery. This hardware allows program-visible registers to be restored
to their original state for multi-cycle instructions so that the instruction restart mechanism is supported.
Memory-to-memory moves and move multiple loads are representative of the complex instructions
needing the special recovery support.

The other major pipeline change affects the IFP. The IFP and OEP are decoupled by a FIFO instruction
buffer. In the V4 IFP, each buffer entry includes 48 bits of instruction data fetched from memory and 64
bits of early decode and branch prediction information. This datapath is expanded slightly to include IFP
fault status information. Thus, every IFP access can be tagged in case an instruction fetch terminates with
an error acknowledge.

MCF547x Reference Manual, Rev. 5

3-42 Freescale Semiconductor

PreciseFaults

NOTE

For access errors signaled on instruction prefetches, an access error
exception is generated only if instruction execution is attempted. If an
instruction fetch access error exception is generated and the FS field
indicates the fault occurred on an extension word, it may be necessary for
the exception PC to be rounded-up to the next page address to determine the
faulting instruction fetch address.

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor 3-43

MCF547x Reference Manual, Rev. 5

3-44 Freescale Semiconductor

Chapter 4
Enhanced Multiply-Accumulate Unit (EMAC)

This chapter describes the functionality, microarchitecture, and performance of the enhanced
multiply-accumulate (EMAC) unit in the ColdFire family of processors.

4.1 Introduction

The MAC design provides a set of DSP operations which can be used to improve the performance of
embedded code while supporting the integer multiply instructions of the baseline ColdFire architecture.

The MAC provides functionality in three related areas:

» Signed and unsigned integer multiplies

» Multiply-accumulate operations supporting signed and unsigned integer operands, as well as
signed, fixed-point, fractional operands

» Miscellaneous register operations

The ColdFire family supports two MAC implementations with different performance levels and
capabilities. The original MAC uses a three-stage execution pipeline optimized for 16-bit operands and
featuring a 16 x 16 multiply array with a single 32-bit accumulator. The EMAC features a four-stage
pipeline optimized for 32-bit operands, with a fully pipelined 32 x 32 multiply array and four 48-bit
accumulators.

The first ColdFire MAC supported signed and unsigned integer operands and was optimized for 16 x 16
operations, such as those found in a variety of applications, including servo control and image
compression. As ColdFire-based systems proliferated, the desire for more precision on input operands
increased. The result was an improved ColdFire MAC with user-programmable control to optionally
enable use of fractional input operands.

EMAC improvements target three primary areas:

* Improved performance of 32 x 32 multiply operations.

» Addition of three more accumulators to minimize EMAC pipeline stalls caused by exchanges
between the accumulator and the pipeline’s general-purpose registers.

» A 48-bitaccumulation data path to allow the use of a 40-bit product plus the addition of 8 extension
bits to increase the dynamic number range when implementing signal processing algorithms.

The three areas of functionality are addressed in detail in following sections. The logic required to support
this functionality is contained in a MAC module, as shown in Figure 4-1.

Operand Y Operand X

Shift 0,1,-1

| Accumulator(s)

Y
Figure 4-1. Multiply-Accumulate Functionality Diagram

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor 4-1

411 MAC Overview

The MAC is an extension of the basic multiplier found in most microprocessors. It is typically
implemented in hardware within an architecture and supports rapid execution of signal processing
algorithms in fewer cycles than comparable non-MAC architectures. For example, small digital filters can
tolerate some variance in an algorithm’s execution time, but larger, more complicated algorithms such as
orthogonal transforms may have more demanding speed requirements beyond the scope of any processor
architecture, and may require full DSP implementation.

To strike a balance between speed, size, and functionality, the ColdFire MAC is optimized for a small set
of operations that involve multiplication and cumulative additions. Specifically, the multiplier array is
optimized for single-cycle pipelined operations with a possible accumulation after product generation.
This functionality is common in many signal processing applications. The ColdFire core architecture also
has been modified to allow an operand to be fetched in parallel with a multiply, increasing overall
performance for certain DSP operations.

Consider a typical filtering operation where the filter is defined,11 as in Figure 4-2.

N-1 N-1
y(i= 3 ady(-k+ 3 blox(i-k)
k=1 k=0

Figure 4-2. Infinite Impulse Response (lIR) Filter

Here, the output y(i) is determined by past output values and past input values. This is the general form of
an infinite impulse response (1IR) filter. A finite impulse response (FIR) filter can be obtained by setting
coefficients a(k) to zero. In either case, the operations involved in computing such a filter are multiplies
and product summing. To show this point, reduce the above equation to a simple, four-tap FIR filter, shown
in Figure 4-3, in which the accumulated sum is a sum of past data values and coefficients.

y(i) = 3 b(k)x(i-k) = b(O)x(i) +b(L)x(i~1) + b(2)X(i-2) + b(3)x(i-3)

k=0
Figure 4-3. Four-Tap FIR Filter

4.1.2 General Operation

The MAC speeds execution of ColdFire integer multiply instructions (MULS and MULU) and provides
additional functionality for multiply-accumulate operations. By executing MULS and MULU in the MAC,
execution times are minimized and deterministic compared to the 2-bit/cycle algorithm with early
termination that the OEP normally uses if no MAC hardware is present.

The added MAC instructions to the ColdFire ISA provide for the multiplication of two numbers, followed
by the addition or subtraction of the product to or from the value in an accumulator. Optionally, the product
may be shifted left or right by 1 bit before addition or subtraction. Hardware support for saturation
arithmetic can be enabled to minimize software overhead when dealing with potential overflow conditions.
Multiply-accumulate operations support 16- or 32-bit input operands of the following formats:

MCF547x Reference Manual, Rev. 5

4-2 Freescale Semiconductor

Introduction

» Signed integers
* Unsigned integers
» Signed, fixed-point, fractional numbers

The EMAC is optimized for single-cycle, pipelined 32 x 32 multiplications. For word- and
longword-sized integer input operands, the low-order 40 bits of the product are formed and used with the
destination accumulator. For fractional operands, the entire 64-bit product is calculated and either
truncated or rounded to the most-significant 40-bit result using the round-to-nearest (even) method before
it is combined with the destination accumulator.

For all operations, the resulting 40-bit product is extended to a 48-bit value (using sign-extension for
signed integer and fractional operands, zero-fill for unsigned integer operands) before being combined
with the 48-bit destination accumulator.

Figure 4-4 and Figure 4-5 show relative alignment of input operands, the full 64-bit product, the resulting
40-bit product used for accumulation, and 48-bit accumulator formats.

OperandY 32
X OperandX 32
Product 40 23 “Q
Extended Product 8 40
+ | I
Accumulator 8 40 8
Extension Byte Upper [7:0] Accumulator [31:0] Extension Byte Lower [7:0]

Figure 4-4. Fractional Alignment

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor 4-3

OperandY 32

X OperandX 32

Product 24 8 32
| |

Extended Product 8 8 32
+ | I |

Accumulator 8 8 32

Extension Byte Upper [7:£ Accumulator [31:0]

Extension Byte Lower [7:0]
Figure 4-5. Signed and Unsigned Integer Alignment
Thus, the 48-bit accumulator definition is a function of the EMAC operating mode. Given that each 48-bit

accumulator is the concatenation of 16-bit accumulator extension register (ACCextn) contents and 32-bit
ACCn contents, the specific definitions are as follows:

it MACSR[6:5] == 00/* signed integer mode */
Complete Accumulator[47:0] = {ACCextn[15:0], ACCn[31:0]}
if MACSR[6:5] == -1/* signed fractional mode */
Complete Accumulator [47:0] = {ACCextn[15:8], ACCn[31:0], ACCextn[7:0]}
if MACSR[6:5] == 10/* unsigned integer mode */
Complete Accumulator[47:0] = {ACCextn[15:0], ACCn[31:0]}
The four accumulators are represented as an array, ACCn, where n selects the register.

Although the multiplier array is implemented in a four-stage pipeline, all arithmetic MAC instructions
have an effective issue rate of 1 cycle, regardless of input operand size or type.

All arithmetic operations use register-based input operands, and summed values are stored internally in an
accumulator. Thus, an additional move instruction is needed to store data in a general-purpose register.
One new feature found in EMAC instructions is the ability to choose the upper or lower word of a register
as a 16-bit input operand. This is useful in filtering operations if one data register is loaded with the input
data and another is loaded with the coefficient. Two 16-bit multiply accumulates can be performed without
fetching additional operands between instructions by alternating the word choice during the calculations.

The EMAC has four accumulator registers versus the MAC’s one accumulator. The additional registers
improve the performance of some algorithms by minimizing pipeline stalls needed to store an accumulator
value back to general-purpose registers. Many algorithms require multiple calculations on a given data set.
By applying different accumulators to these calculations, it is often possible to store one accumulator
without any stalls while performing operations involving a different destination accumulator.

MCF547x Reference Manual, Rev. 5

4-4 Freescale Semiconductor

Memory Map/Register Definition

The need to move large amounts of data presents an obstacle to obtaining high throughput rates in DSP
engines. New and existing ColdFire instructions can accommodate these requirements. A MOVEM
instruction can move large blocks of data efficiently by generating line-sized burst transfers. The ability to
simultaneously load an operand from memory into a register and execute a MAC instruction makes some
DSP operations such as filtering and convolution more manageable.

The programming model includes a 16-bit mask register (MASK), which can optionally be used to
generate an operand address during MAC + MOVE instructions. The application of this register with
auto-increment addressing mode supports efficient implementation of circular data queues for memory
operands.

The additional MAC status register (MACSR) contains a 4-bit operational mode field and condition flags.
Operational mode bits control whether operands are signed or unsigned and whether they are treated as
integers or fractions. These bits also control the overflow/saturation mode and the way in which rounding
is performed. Negative, zero, and multiple overflow condition flags are also provided.

4.2 Memory Map/Register Definition

The EMAC provides the following program-visible registers:

* Four 32-bit accumulators (ACCn = ACCO0, ACC1, ACC2, and ACC3)

» Eight 8-bit accumulator extensions (two per accumulator), packaged as two 32-bit values for load
and store operations (ACCext01 and ACCext23)

* One 16-bit mask register (MASK)

* One 32-bit MAC status register (MACSR) including four indicator bits signaling product or
accumulation overflow (one for each accumulator: PAV0-PAV3)

These registers are shown in Figure 4-6.
31 0

MACSR MAC status register
ACCO MAC accumulator O
ACC1 MAC accumulator 1
ACC2 MAC accumulator 2
ACC3 MAC accumulator 3
ACCext01 Extensions for ACCO and ACC1
ACCext23 Extensions for ACC2 and ACC3
MASK MAC mask register

Figure 4-6. EMAC Register Set

4.2.1 MAC Status Register (MACSR)

MACSR functionality is organized as follows:

* MACSR[11-8] contains one product/accumulation overflow flag per accumulator.
* MACSR[7-4] defines the operating configuration of the MAC unit.
* MACSR[3-0] contains indicator flags from the last MAC instruction execution.

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor 4-5

Reset

Reset

Reg
Addr

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 PAVX OMC| S/U | FIl | RIT N Z \% EV
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 4-7. MAC Status Register (MACSR)

Table 4-1 describes MACSR fields.

Table 4-1. MACSR Field Descriptions

Bits

Name

Description

31-12

Reserved, should be cleared.

11-8

PAVX

Product/accumulation overflow flags. Contains four flags, one per accumulator, that indicate if past
MAC or MSAC instructions generated an overflow during product calculation or the 48-bit
accumulation. When a MAC or MSAC instruction is executed, the PAVx flag associated with the
destination accumulator is used to form the general overflow flag, MACSR[V]. Once set, each flag
remains set until V is cleared by a MOV.L , MACSR instruction or the accumulator is loaded directly.

OoMC

Operational mode field: Overflow/saturation mode. Used to enable or disable saturation mode on
overflow. If set, the accumulator is set to the appropriate constant on any operation which overflows
the accumulator. Once saturated, the accumulator remains unaffected by any other MAC or MSAC
instructions until either the overflow bit is cleared or the accumulator is directly loaded.

S/U

Operational mode field: Signed/unsigned operations.

In integer mode:

S/U determines whether operations performed are signed or unsigned. It also determines the

accumulator value during saturation, if enabled.

0 Signed numbers. On overflow, if OMC is enabled, an accumulator saturates to the most positive
(Ox7FFF_FFFF) or the most negative (0x8000_0000) number, depending on both the instruction
and the value of the product that overflowed.

1 Unsigned numbers. On overflow, if OMC is enabled, an accumulator saturates to the smallest
value (0x0000_0000) or the largest value (OxFFFF_FFFF), depending on the instruction.

In fractional mode:

S/U controls rounding while storing an accumulator to a general-purpose register.

0 Move accumulator without rounding to a 16-bit value. Accumulator is moved to a general-purpose
register as a 32-bit value.

1 The accumulator is rounded to a 16-bit value using the round-to-nearest (even) method when it
is moved to a general-purpose register. See Section 4.2.1.1.1, “Rounding.” The resulting 16-bit
value is stored in the lower word of the destination register. The upper word is zero-filled. The
accumulator value is not affected by this rounding procedure.

MCF547x Reference Manual, Rev. 5

4-6

Freescale Semiconductor

Memory Map/Register Definition

Table 4-1. MACSR Field Descriptions (Continued)

Bits

Name

Description

F/

Operational mode field: Fractional/integer mode Determines whether input operands are treated as
fractions or integers.

0 Integers can be represented in either signed or unsigned notation, depending on the value of S/U.
1 Fractions are represented in signed, fixed-point, two's complement notation. Values range from
-1 to 1- 215 for 16-bit fractions and -1 to 1 - 231 for 32-bit fractions. See Section 4.3.2, “Data

Representation.”

RIT

Operational mode field: Round/truncate mode. Controls the rounding procedure for MOV.L

ACCXx,Rx, or MSAC.L instructions when operating in fractional mode.

0 Truncate. The product’s Isbs are dropped before it is combined with the accumulator. Additionally,
when a store accumulator instruction is executed (MOV.L ACCXx,Rx), the 8 Isbs of the 48-bit
accumulator logic are simply truncated.

1 Round-to-nearest (even). The 64-bit product of two 32-bit, fractional operands is rounded to the
nearest 40-bit value. If the low-order 24 bits equal 0x80_0000, the upper 40 bits are rounded to
the nearest even (Isb = 0) value.See Section 4.2.1.1.1, “Rounding.” Additionally, when a store
accumulator instruction is executed (MOV.L ACCx,Rx), the Isbs of the 48-bit accumulator logic are
used to round the resulting 16- or 32-bit value. If MACSR[S/U] = 0 and MACSR[R/T] = 1, the
low-order 8 bits are used to round the resulting 32-bit fraction. If MACSR[S/U] = 1, the low-order
24 bits are used to round the resulting 16-bit fraction.

Negative flag. Set if the msb of the result is set, otherwise cleared. N is affected only by MAC, MSAC,
and load operations; it is not affected by MULS and MULU instructions.

Zero flag. Set if the result equals zero, otherwise cleared. This bit is affected only by MAC, MSAC,
and load operations; it is not affected by MULS and MULU instructions.

Overflow flag. Set if an arithmetic overflow occurs on a MAC or MSAC instruction indicating that the
result cannot be represented in the limited width of the EMAC. V is set only if a product overflow
occurs or the accumulation overflows the 48-bit structure. V is evaluated on each MAC or MSAC
operation and uses the appropriate PAVx flag in the next-state V evaluation.

EV

Extension overflow flag. Signals that the last MAC or MSAC instruction overflowed the 32 Isbs in
integer mode or the 40 Isbs in fractional mode of the destination accumulator. However, the result is
still accurately represented in the combined 48-bit accumulator structure. Although an overflow has
occurred, the correct result, sign, and magnitude are contained in the 48-bit accumulator.
Subsequent MAC or MSAC operations may return the accumulator to a valid 32/40-bit result.

Table 4-2 summarizes the interaction of the MACSR[S/U,F/1,R/T] control bits.

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor

4-7

Table 4-2. Summary of S/U, F/I, and R/T Control Bits

S/IU | FIN | RIT Operational Modes

0 0 X | Signed, integer

0 1 0 |Signed, fractional
Truncate on MAC.L and MSAC.L
No round on accumulator stores

0 1 1 |Signed, fractional
Round on MAC.L and MSAC.L
Round-to-32-bits on accumulator stores

1 0 X | Unsigned, integer

1 1 0 |Signed, fractional
Truncate on MAC.L and MSAC.L
Round-to-16-bits on accumulator stores

1 1 1 |Signed, fractional
Round on MAC.L and MSAC.L
Round-to-16-bits on accumulator stores

4.2.1.1 Fractional Operation Mode

This section describes behavior when the fractional mode is used (MACSR[F/I] is set).

4.2.1.1.1 Rounding

When the processor is in fractional mode, there are two operations during which rounding can occur.

» Execution of a store accumulator instruction (MOV.L ACCXx,Rx). The Isbs of the 48-bit
accumulator logic are used to round the resulting 16- or 32-bit value. If MACSR[S/U] is cleared,
the low-order 8 bits are used to round the resulting 32-bit fraction. If MACSR[S/U] is set, the
low-order 24 bits are used to round the resulting 16-bit fraction.

» Execution of a MAC (or MSAC) instruction with 32-bit operands. If MACSR[R/T] is zero,
multiplying two 32-bit numbers creates a 64-bit product that is truncated to the upper 40 bits;
otherwise, it is rounded using round-to-nearest (even) method.

To understand the round-to-nearest-even method, consider the following example involving the rounding
of a 32-bit number, RO, to a 16-bit number. Using this method, the 32-bit number is rounded to the closest
16-bit number possible. Let the high-order 16 bits of RO be named R0.U and the low-order 16 bits be RO.L.

* IfRO.L is less than 0x8000, the result is truncated to the value of R0.U.
* IfRO.L is greater than 0x8000, the upper word is incremented (rounded up).

e If RO.L is 0x8000, RO is half-way between two 16-bit numbers. In this case, rounding is based on
the Isb of RO.U, so the result is always even (Isb = 0).

— If the Isb of RO.U = 1 and R0O.L = 0x8000, the number is rounded up.
— If the Isb of RO.U = 0 and RO.L =0x8000, the number is rounded down.

This method minimizes rounding bias and creates as statistically correct an answer as possible.

The rounding algorithm is summarized in the following pseudocode:
if RO.L < 0x8000

then Result = RO.U
else if RO.L > 0x8000

MCF547x Reference Manual, Rev. 5

4-8 Freescale Semiconductor

Memory Map/Register Definition

then Result = RO.U + 1

else if Isb of RO.LU = 0 /* RO.L = 0x8000 */
then Result = RO.U
else Result = RO.U + 1

The round-to-nearest-even technique is also known as convergent rounding.

4.2.1.1.2 Saving and Restoring the EMAC Programming Model

The presence of rounding logic in the output datapath of the EMAC requires that special care be taken
during the EMAC’s save/restore process. In particular, any result rounding modes must be disabled during
the save/restore process so the exact bit-wise contents of the EMAC registers are accessed. Consider the
following memory structure containing the EMAC programming model:

struct macState {

int accO;
int accl;
int acc2;
int acc3;
int accextO0l;
int accext02;
int mask;
int macsr;

} macState;

The following assembly language routine shows the proper sequence for a correct EMAC state save. This
code assumes all Dn and An registers are available for use and the memory location of the state save is
defined by A7.

EMAC_state save:

move.l macsr,d7 ; save the macsr

clr.l do ; zero the register to ...

move.l dO,macsr ; disable rounding in the macsr
move.l acc0,dO ; save the accumulators

move.l accl,dl

move.l acc2,d2

move.l acc3,d3

move.l accext01l,d4 ; save the accumulator extensions
move.l accext23,d5

move.l mask,d6 ; save the address mask

movem. 1l #0x00ffF, (a7)

; move the state to memory

The following code performs the EMAC state restore:

EMAC_state_restore:

movem.l (a7),#0x00fF

; restore the state from memory

move.l #0,macsr ; disable rounding in the macsr
move.l dO,accO ; restore the accumulators

move.l dl,accl

move.l d2,acc2

move.l d3,acc3

move.l d4,accext01 ; restore the accumulator extensions
move.l d5,accext23

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor

4-9

move.l d6,mask ; restore the address mask
move.l d7,macsr ; restore the macsr

By executing this type of sequence, the exact state of the EMAC programming model can be correctly
saved and restored.

42113 MULS/MULU

MULS and MULU are unaffected by fractional mode operation; operands are still assumed to be integers.

42.1.1.4 Scale Factor in MAC or MSAC Instructions

The scale factor is ignored while the MAC is in fractional mode.

4.2.2 Mask Register (MASK)

The 32-bit MASK implements the low-order 16 bits to minimize the alignment complications involved
with loading and storing only 16 bits. When the MASK is loaded, the low-order 16 bits of the source
operand are actually loaded into the register. When it is stored, the upper 16 bits are all forced to ones.

This register performs a simple AND with the operand address for MAC instructions. That is, the
processor calculates the normal operand address and, if enabled, that address is then ANDed with
{OXFFFF, MASK]15:0]} to form the final address. Therefore, with certain MASK bits cleared, the operand
address can be constrained to a certain memory region. This is used primarily to implement circular queues
in conjunction with the (An)+ addressing mode.

This feature minimizes the addressing support required for filtering, convolution, or any routine that
implements a data array as a circular queue. For MAC + MOVE operations, the MASK contents can
optionally be included in all memory effective address calculations. The syntax is as follows:

MAC.sz Ry,RxSF,<ea>yé&,Rw

The & operator enables the use of MASK and causes bit 5 of the extension word to be set. The exact
algorithm for the use of MASK is as follows:

if extension word, bit [5] = 1, the MASK bit, then
if <ea> = (An)
oa = An & {OxFFFF, MASK}

if <ea> = (An)+
oa = An
An = (An + 4) & {OxFFFF, MASK}

if <ea> =-(An)
oa = (An - 4) & {OxFFFF, MASK}
An = (An - 4) & {OxFFFF, MASK}

if <ea> = (d16,An)
oa = (An + se_d16) & {OxFFFFOx, MASK}

Here, oa is the calculated operand address and se_d16 is a sign-extended 16-bit displacement. For
auto-addressing modes of post-increment and pre-decrement, the calculation of the updated An value is
also shown.

Use of the post-increment addressing mode, {(An)+} with the MASK is suggested for circular queue
implementations.

MCF547x Reference Manual, Rev. 5

4-10 Freescale Semiconductor

4.3

EMAC Instruction Set Summary

EMAC Instruction Set Summary

Table 4-3 summarizes EMAC unit instructions.

Table 4-3. EMAC Instruction Summary

Command

Mnemonic

Description

Multiply Signed

MULS <ea>y,Dx

Multiplies two signed operands yielding a signed result

Multiply Unsigned

MULU <ea>y,Dx

Multiplies two unsigned operands yielding an unsigned result

Multiply Accumulate

MAC Ry,RXSFACCx
MSAC Ry,RxSF,ACCXx

Multiplies two operands and adds/subtracts the product to/from an
accumulator

Multiply Accumulate
with Load

MAC Ry,Rx,<ea>y,Rw,ACCx
MSAC Ry,Rx,<ea>y,Rw,ACCx

Multiplies two operands and combines the product to an
accumulator while loading a register with the memory operand

Load Accumulator

MOV.L {Ry,#imm}ACCx

Loads an accumulator with a 32-bit operand

Store Accumulator

MOV.L ACCx,Rx

Writes the contents of an accumulator to a CPU register

Copy Accumulator

MOV.L ACCy,ACCx

Copies a 48-bit accumulator

Load MACSR

MOV.L {Ry,#mm},MACSR

Writes a value to MACSR

Store MACSR

MOV.L MACSR,Rx

Write the contents of MACSR to a CPU register

Store MACSR to CCR

MOV.L MACSR,CCR

Write the contents of MACSR to the CCR

Load MAC Mask Reg

MOV.L {Ry.#mm},MASK

Writes a value to the MASK register

Store MAC Mask Reg

MOV.L MASK,Rx

Writes the contents of the MASK to a CPU register

Load AccExtensions01

MOV.L {Ry,#mm},ACCext01

Loads the accumulator 0,1 extension bytes with a 32-bit operand

Load AccExtensions23

MOV.L {Ry,#mm},ACCext23

Loads the accumulator 2,3 extension bytes with a 32-bit operand

Store AccExtensions01

MOV.L ACCext01,Rx

Writes the contents of accumulator 0,1 extension bytes into a CPU
register

Store AccExtensions23

MOV.L ACCext23,Rx

Writes the contents of accumulator 2,3 extension bytes into a CPU
register

43.1

EMAC Instruction Execution Timing

The instruction execution times for the EMAC can be found in Section 3.7, “Instruction Execution
Timing.”

The ColdFire family supports two multiply-accumulate implementations that provide different levels of
performance and capability for differing silicon costs. The EMAC features a four-stage execution pipeline,
optimized for 32-bit operands with a fully-pipelined 32 x 32 multiply array and four 48-bit accumulators.

The EMAC execution pipeline overlaps the AGEX stage of the OEP; that is, the first stage of the EMAC
pipeline is the last stage of the basic OEP. EMAC units are designed for sustained, fully-pipelined
operation on accumulator load, copy, and multiply-accumulate instructions. However, instructions that
store contents of the multiply-accumulate programming model can generate OEP stalls that expose the

EMAC execution pipeline depth, as in the following:
mac .w Ry, Rx, AccO

move. | AccO, Rz

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor 4-11

The mov.l instruction that stores the accumulator to an integer register (Rz) stalls until the program-visible
copy of the accumulator is available. Figure 4-8 shows EMAC timing.

Three-cycle
regBusy stall

DSOC ‘ mac mov | mov l

AGEX mac mov

EMAC EX1 mac mov
EMAC EX2 mac
EMAC EX3 mac |

EMAC EX4 mac

Accumulator O old >< new

Figure 4-8. EMAC-Specific OEP Sequence Stall

In Figure 4-8, the OEP stalls the store-accumulator instruction for 3 cycles: the depth of the EMAC
pipeline minus 1. The minus 1 factor is needed because the OEP and EMAC pipelines overlap by a cycle,
the AGEX stage. As the store-accumulator instruction reaches the AGEX stage where the operation is
performed, the just-updated accumulator O value is available.

As with change or use stalls between accumulators and general-purpose registers, introducing intervening
instructions that do not reference the busy register can reduce or eliminate sequence-related store-MAC
instruction stalls. In fact, a major benefit of the EMAC is the addition of three accumulators to minimize
stalls caused by exchanges between the accumulator(s) and the general-purpose registers.

4.3.2 Data Representation

MACSR[S/U,F/1] selects one of the following three modes, where each mode defines a unique operand
type:
 Two’s complement signed integer: In this format, an N-bit operand value lies in the range - -2(N-1)
< operand < 2N-D 1 The binary point is right of the Isb.
» Unsigned integer: In this format, an N-bit operand value lies in the range 0 < operand < 2N_1. The
binary point is right of the Isb.

» Two’s complement, signed fractional: In an N-bit number, the first bit is the sign bit. The remaining
bits signify the first N-1 bits after the binary point. Given an N-bit number, ay_jan.0an.3-.- 828180,
its value is given by the equation in Figure 4-9.

N-2
value = _(1.aN—l)+ Z 2('+1‘N)-ai

i=0

Figure 4-9. Two’s Complement, Signed Fractional Equation

MCF547x Reference Manual, Rev. 5

4-12 Freescale Semiconductor

EMAC Instruction Set Summary

This format can represent numbers in the range -1 < operand < 1 - 2(N-1),

For words and longwords, the largest negative number that can be represented is -1, whose internal
representation is 0x8000 and 0x8000_0000, respectlvely The largest positive word is OX7FFF or (1 - 2°1°);
the most positive longword is 0x7FFF_FFFF or (1 - 2°

4.3.3

EMAC Opcodes

EMAC opcodes are described in the ColdFire Programmer’s Reference Manual. Note the following:

Unless otherwise noted, the value of MACSR[N,Z] is based on the result of the final operation that
involves the product and the accumulator.

The overflow (V) flag is handled differently. It is set if the complete product cannot be represented
as a 40-bit value (this applies to 32 x 32 integer operations only) or if the combination of the
product with an accumulator cannot be represented in the given number of bits. The EMAC design
includes an additional product/accumulation overflow bit for each accumulator that are treated as
sticky indicators and are used to calculate the V bit on each MAC or MSAC instruction. See
Section 4.2.1, “MAC Status Register (MACSR).”

For the MAC design, the assembler syntax of the MAC (multiply and add to accumulator) and
MSAC (multiply and subtract from accumulator) instructions does not include a reference to the
single accumulator. For the EMAC, it is expected that assemblers support this syntax and that no
explicit reference to an accumulator is interpreted as a reference to ACCO. These assemblers would
also support syntaxes where the destination accumulator is explicitly defined.

The optional 1-bit shift of the product is specified using the notation {<< | >>} SF, where <<1
indicates a left shift and >>1 indicates a right shift. The shift is performed before the product is
added to or subtracted from the accumulator. Without this operator, the product is not shifted. If the
EMAC isin fractional mode (MACSR[F/1] is set), SF is ignored and no shift is performed. Because
a product can overflow, the following guidelines are implemented:

— For unsigned word and longword operations, a zero is shifted into the product on right shifts.

— For signed, word operations, the sign bit is shifted into the product on right shifts unless the
product is zero. For signed, longword operations, the sign bit is shifted into the product unless
an overflow occurs or the product is zero, in which case a zero is shifted in.

— For all left shifts, a zero is inserted into the Isb position.

The following pseudocode explains basic MAC or MSAC instruction functionality. This example is
presented as a case statement covering the three basic operating modes with signed integers, unsigned
integers, and signed fractionals. Throughout this example, a comma-separated list in curly brackets, {},
indicates a concatenation operation.

switch (MACSR[6:5]) /* MACSR[S/U, F/1] */

{

case O: /* signed integers */

if (MACSR.OMC == 0 || MACSR.PAVXx == 0)
then {
MACSR.PAVX = 0O
/* select the input operands */
if (sz == word)
then {if (U/Ly == 1)
then operandY[31:0] = {sign-extended Ry[31], Ry[31:16]}
else operandY[31:0] = {sign-extended Ry[15], Ry[15:0]}
it (U/Lx == 1)
then operandX[31:0] = {sign-extended Rx[31], Rx[31:16]}
else operandX[31:0] = {sign-extended Rx[15], Rx[15:0]}

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor 4-13

}
else {operandY[31:0] Ry[31:0]
operandX[31:0] = Rx[31:0]

}

/* perform the multiply */
product[63:0] = operandY[31:0] * operandX[31:0]

/* check for product overflow */
if ((product[63:39] '= 0x0000_00_0) && (product[63:39] != Oxfff

f ff_1))

then { /* product overflow */
MACSR.PAVX = 1
MACSR.V = 1

if (inst == MSAC && MACSR.OMC == 1)
then if (product[63] == 1)
then result[47:0] = Ox0000_7fff_ffff
else result[47:0] = OxfFFf_8000_0000
else if (MACSR.OMC == 1)
then /* overflowed MAC,
saturationMode enabled */
if (product[63] == 1)
then result[47:0] = OxfFff_8000_0000
else result[47:0] = Ox0000_7fff_ffff
}

/* sign-extend to 48 bits before performing any scaling */
product[47:40] = {8{product[39]}} /* sign-extend */

/* scale product before combining with accumulator */

switch (SF) /* 2-bit scale factor */
{
case O: /* no scaling specified */
break;
case 1: /* SF = “<< 17 */
product[40:0] = {product[39:0], O}
break;
case 2: /* reserved encoding */
break;
case 3: /* SF = “>> 17 */
product[39:0] = {product[39], product[39:1]}
break;
}

if (MACSR.PAVXx == 0)
then {if (inst == MSAC)
then result[47:0]
else result[47:0]

ACCx[47:0] - product[47:0]
ACCx[47:0] + product[47:0]

}

/* check for accumulation overflow */
if (accumulationOverflow == 1)
then {MACSR.PAVx = 1

MCF547x Reference Manual, Rev. 5

4-14 Freescale Semiconductor

EMAC Instruction Set Summary

MACSR.V = 1
if (MACSR.OMC == 1)
then /* accumulation overflow,
saturationMode enabled */
if (result[47] == 1)
then result[47:0]
else result[47:0]

0Xx0000_7FFF_FFFF
OxFFFF_8000_0000

ks
/* transfer the result to the accumulator */
ACCx[47:0] = result[47:0]
ks
MACSR.V = MACSR.PAVX
MACSR.N = ACCx[47]
if (ACCx[47:0] == 0x0000_0000_0000)
then MACSR.Z = 1
else MACSR.Z = 0
if ((ACCx[47:31] == 0x0000_0) || (ACCx[47:31] == OxFFff_1))

then MACSR.EV = 0
else MACSR.EV =1
break;
case 1,3: /* signed fractionals */
if (MACSR.OMC == O || MACSR.PAVX == 0)
then {

MACSR.PAVX = 0
if (sz == word)
then {if (U/Ly == 1)
then operandY[31:0] = {Ry[31:16], Ox0000}
else operandY[31:0] = {Ry[15:0], O0x0000}
if (U/Lx == 1)
then operandX[31:0] = {Rx[31:16], Ox0000}
else operandX[31:0] = {Rx[15:0], 0x0000}
}
else {operandY[31:0]
operandX[31:0]

Ry[31:0]
Rx[31:0]

}
/* perform the multiply */

product[63:0] = (operandY[31:0] * operandX[31:0]) << 1
/* check for product rounding */
if (MACSR.R/T == 1)
then { /* perform convergent rounding */
if (product[23:0] > 0x80_0000)
then product[63:24] = product[63:24] + 1
else if ((product[23:0] == 0x80_0000) && (product[24] == 1))
then product[63:24] = product[63:24] + 1
}
/* sign-extend to 48 bits and combine with accumulator */
/* check for the -1 * -1 overflow case */
if ((operandY[31:0] == 0x8000_0000) && (operandX[31:0] == 0x8000_0000))
then product[71:64] = 0x00 /* zero-fill */
else product[71:64] = {8{product[63]}} /* sign-extend */
if (inst == MSAC)
then result[47:0]
else result[47:0]

ACCx[47:0] - product[71:24]
ACCx[47:0] + product[71:24]

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor 4-15

/* check for accumulation overflow */
if (accumulationOverflow == 1)
then {MACSR.PAVXx = 1
MACSR.V = 1
if (MACSR.OMC == 1)
then /* accumulation overflow,
saturationMode enabled */
if (result[47] == 1)
then result[47:0]
else result[47:0]

0Xx007F_FFFF_FFO0
0xFF80_0000_0000

}

/* transfer the result to the accumulator */
ACCx[47:0] = result[47:0]
s
MACSR.V = MACSR.PAVX
MACSR.N = ACCx[47]
if (ACCx[47:0] == 0x0000_0000_0000)
then MACSR.Z =1
else MACSR.Z = 0
ifT ((ACCx[47:39] == 0x00_0) || (ACCx[47:39] == Oxff_1))

then MACSR.EV = 0
else MACSR.EV = 1
break;
case 2: /* unsigned integers */
if (MACSR.OMC == O || MACSR.PAVX == 0)
then {

MACSR.PAVX = 0O
/* select the input operands */
if (sz == word)
then {if (U/Ly == 1)
then operandY[31:0] = {Ox0000, Ry[31:16]}
else operandY[31:0] = {Ox0000, Ry[15:0]1}
if (U/Lx == 1)
then operandX[31:0] = {Ox0000, Rx[31:16]}
else operandX[31:0] = {Ox0000, Rx[15:0]%}
}
else {operandY[31:0]
operandX[31:0]

Ry[31:0]
Rx[31:0]

}

/* perform the multiply */
product[63:0] = operandY[31:0] * operandX[31:0]

/* check for product overflow */
if (product[63:40] = 0x0000_00)
then { /* product overflow */
MACSR.PAVX = 1
MACSR.V = 1
if (inst == MSAC && MACSR.OMC == 1)
then result[47:0] = 0x0000_0000_0000
else if (MACSR.OMC == 1)
then /* overflowed MAC,
saturationMode enabled */

MCF547x Reference Manual, Rev. 5

4-16 Freescale Semiconductor

EMAC Instruction Set Summary

result[47:0] = OxFFFF_FFFF_FFFF
}

/* zero-Till to 48 bits before performing any scaling */
product[47:40] = O /* zero-fill upper byte */

/* scale product before combining with accumulator */

switch (SF) /* 2-bit scale factor */
{
case O: /* no scaling specified */
break;
case 1: /* SF = “<< 17 */
product[40:0] = {product[39:0], O}
break;
case 2: /* reserved encoding */
break;
case 3: /* SF = “>> 17 */
product[39:0] = {0, product[39:1]}
break;
}

/* combine with accumulator */
if (MACSR.PAVX == 0)
then {if (inst == MSAC)
then result[47:0]
else result[47:0]

ACCx[47:0] - product[47:0]
ACCx[47:0] + product[47:0]

}
/* check for accumulation overflow */
if (accumulationOverflow == 1)
then {MACSR.PAVXx = 1
MACSR.V = 1

if (inst == MSAC && MACSR.OMC == 1)
then result[47:0] = 0x0000_0000_0000
else if (MACSR.OMC == 1)
then /* overflowed MAC,
saturationMode enabled */
result[47:0] = OxFfff_ffff_ffff
s

/* transfer the result to the accumulator */
ACCx[47:0] = result[47:0]

s
MACSR.V = MACSR.PAVx
MACSR.N = ACCx[47]

if (ACCx[47:0] == 0x0000_0000_0000)
then MACSR.Z 1
else MACSR.Z = 0
if (ACCx[47:32] == 0x0000)
then MACSR.EV 0
else MACSR.EV 1

break;

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor 4-17

MCF547x Reference Manual, Rev. 5

4-18 Freescale Semiconductor

Chapter 5
Memory Management Unit (MMU)

This chapter describes the ColdFire virtual memory management unit (MMU), which provides
virtual-to-physical address translation and memory access control. The MMU consists of memory-mapped
control, status, and fault registers that provide access to translation-lookaside buffers (TLBs). Software can
control address translation and access attributes of a virtual address by configuring MMU control registers
and loading TLBs. With software support, the MMU provides demand-paged, virtual addressing.

51 Features

The MMU has the following features:

* MMU memory-mapped control, status, and fault registers
— Support a flexible, software-defined virtual environment
— Provide control and maintenance of TLBs
— Provide fault status and recovery information functions

» Separate, 32-entry, fully associative instruction and data TLBs (Harvard TLBs)
— Resides in the controller
— Operates in parallel with the memories
— Suffers no performance penalty on TLB hits
— Supports 1-, 4-, and 8-Kbyte and 1-Mbyte page sizes concurrently
— Contains register-based TLB entries

» Core extensions:
— User stack pointer
— Al access error exceptions are precise and recoverable

» Harvard TLB provides 97% of baseline performance on large embedded applications using
equivalent V4 without MMU support as a baseline.

5.2 Virtual Memory Management Architecture

The ColdFire memory management architecture provides a demand-paged, virtual-address environment
with hardware address translation acceleration. It supports supervisor/user, read, write, and execute
permission checking on a per-memory request basis.

The architecture defines the MMU TLB, associated control logic, TLB hit/miss logic, address translation
based on the TLB contents, and access faults due to TLB misses and access violations. It intentionally
leaves some virtual environment details undefined to maximize the software-defined flexibility. These
include the exact structure of the memory-resident pointer descriptor/page descriptor tables, the base
registers for these tables, the exact information stored in the tables, the methodology (if any) for
maintenance of access, and written information on a per-page basis.

5.2.1 MMU Architecture Features

To add optional virtual addressing support, demand-page support, permission checking, and hardware
address translation acceleration to the ColdFire architecture, the MMU architecture features the following:

» Addresses from the core to the MMU are treated as physical or virtual addresses.

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor 5-1

» The address access control logic, address attribute logic, memories, and controller function as in
previous ColdFire versions with the addition of the MMU. The MMU, its TLB, and associated
control reside in the logic.

* The MMU appears as a memory-mapped device in the space. Information for access error fault
processing is stored in the MMU.

» Avprecise fault (transfer error acknowledge) signals the core on translation (TLB miss) and access
faults. The core supports an instruction restart model for this fault class. Note that this structure
uses the existing ColdFire access error fault vector and needs no new ColdFire exception stack
frames.

» The following additions are made to the memory access control to better support the fault
processing and memory maintenance necessary for this virtual addressing environment. These
additions improve memory performance and functionality for physical and virtual address
environments:

— New supervisor-protect bits to the access control registers (ACRs) and the cache control
register (CACR)
— Improved addressing of the ACRs

5.2.2 MMU Architecture Location

Figure 5-1 shows the placement of the MMU/TLB hardware. It follows a traditional model in which it is
closely coupled to the processor local-memory controllers.

MCF547x Reference Manual, Rev. 5

5-2 Freescale Semiconductor

Virtual Memory Management Architecture

Instruction Fetch
Pipeline
> J
> IAG >
Branch c KC1 | Instruction ‘
cache | 'C1 Memory -
KC2
IC2 <
A .
Branch ED Physical
Accel. KC1
B
> Memory
Management
Y Vv Unit M Bus
> (MMU) K2M [€———>
rand Exg¢cution Pipelin .
Ope$ d cution Pipeline Physical
Y KC1
> DS | DS
Y
J -
OAG >
KC1 Data -—
OC1 > Memory
KCcz2| =
OC2 |= Misalignment
_____ e Module
EX | |EMAC| | FPU | |
_____ 4
DA

Y v v YY ¥
| BDM | | DDATA
l "
DSCLK DSI DSDO PSTDDATA PSTCLK

Figure 5-1. CF4e Processor Core Block with MMU

5.2.3 MMU Architecture Implementation

This section describes ColdFire design additions and changes for the MMU architecture. It includes
precise faults, MMU access, virtual mode, virtual memory references, instruction and data cache
addresses, supervisor/user stack pointers, access error stack frame additions, expanded control register
space, ACR address improvements, supervisor protection, and debugging in a virtual environment.

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor 5-3

5231 Precise Faults

The MMU architecture performs virtual-to-physical address translation and permission checking in the
core. To support demand-paging, the core design provides a precise, recoverable fault for all references.

52.3.2 MMU Access

The MMU TLB control registers are memory-mapped. The TLB entries are read and written indirectly
through the MMU control registers. The memory space for these resources is defined by a new supervisor
program model register, the MMU base address register (MMUBAR). This register defines a
supervisor-mode, data-only space. It has the highest priority for the data address mode determination.

5.2.3.3 Virtual Mode

Every instruction and data reference is either a virtual or physical address mode access. All addresses for
special mode (interrupt acknowledges, emulator mode operations, etc.) accesses are physical. All
addresses are physical if the MMU is not enabled. If the MMU is present and enabled, the address mode
for normal accesses is determined by the MMUBAR, RAMBARS, and ACRs in the priority order listed.
Addresses that hit in the MMUBAR, RAMBARSs, and ACRs are treated as physical references. These
addresses are not translated and their address attributes are sourced from the highest priority mapping
register they hit. If an address hits none of these mapping registers, it is a virtual address and is sent to the
MMU. If the MMU is enabled, the default CACR information is not used.

5.2.3.4 Virtual Memory References

The ColdFire MMU architecture references the MMU for all virtual mode accesses to the . MMU, SRAM
and ACR memory spaces are treated as physical address spaces and all permissions that apply to these
spaces are contained in the respective mapping register. The virtual mode access either hits or misses in
the TLB of the MMU. A TLB miss generates an access fault in the processor, allowing software to either
load the appropriate translation into the TLB and restart the faulting instruction or abort the process. Each
TLB hit checks permissions based on the access control information in the referenced TLB entry.

5.2.35 Instruction and Data Cache Addresses

For a given page size, virtual address bits that reference within a page are called the in-page address. All
bits above this are the virtual page number. Likewise, the physical address has a physical page number and
in-page address bits. Virtual and physical in-page address bits are the same; the MMU translates the virtual
page number to the physical page humber.

Instruction and data caches are accessed with the untranslated address. The translated address is used for
cache allocation. That is, caches are virtual-address accessed and physical-address tagged. If instruction
and data cache addresses are not larger than the in-page address for the smallest active MMU page, the
cache is considered physically accessed; if they are larger, the cache can have aliasing problems between
virtual and cache addresses. Software handles these problems by forcing the virtual address to be equal to
the physical address for those bits addressing the cache, but above the in-page address of the smallest
active page size. The number of these bits depends on cache and page sizes.

Caches are addressed with the virtual address, because the cache uses synchronous memory elements, and
an access starts at the rising-clock edge of the first pipeline stage. The MMU provides a physical address
midway through this cycle.

If the cache set address has fewer bits than the in-page address, the cache is considered physically
addressed because these bits are the same in the virtual and physical addresses. If the cache set address has

MCF547x Reference Manual, Rev. 5

5-4 Freescale Semiconductor

Virtual Memory Management Architecture

more bits than the in-page address, one or more of the low-order virtual page number bits are used to
address the cache. The MMU translates these bits; the resulting low-order physical page number bits are
used to determine cache hits.

Address aliasing problems occur when two virtual addresses access one physical page. This is generally
allowed and, if the page is cacheable, one coherent copy of the page image is mapped in the cache at any
time.

If multiple virtual addresses pointing to the same physical address differ only in the low-order virtual page
number bits, conflicting copies can be allocated. For an 8-Kbyte, 4-way, set-associative cache with a
16-byte line size, the cache set address uses address bits 10—4. If virtual addresses 0x0_1000 and 0x0_1400
are mapped to physical address 0x0_1000, using virtual address 0x0_1000 loads cache set 0x00; using
virtual address 0x0_1400 loads cache set 0x40. This puts two copies of the same physical address in the
cache making this memory space not coherent. To avoid this problem, software must force low-order
virtual page number bits to be equal to low-order physical address bits for all bits used to address the cache
set.

5.2.3.6 Supervisor/User Stack Pointers

To isolate supervisor and user modes, CF4e implements two A7 register stack pointers, one for supervisor
mode (SSP) and one for user mode (USP). Two former M68000 family privileged instructions to load and
store the user stack pointer are restored in the instruction set architecture.

5.2.3.7 Access Error Stack Frame

accesses that fault (that is, terminate with a transfer error acknowledge) generate an access error

exception. MMU TLB misses and access violations use the same fault. To quickly determine if a fault was
due to a TLB miss or another type of access error, new fault status field (FS) encodings in the exception
stack frame signal TLB misses on the following:

* Instruction fetch

* Instruction extension fetch

» Data read

» Data write

See Section 5.4.3, “Access Error Stack Frame Additions,” for more information.

5.2.3.8 Expanded Control Register Space

The MMU base address register (MMUBAR) is added for ColdFire virtual mode. Like other control
registers, it can be accessed from the debug module or written using the privileged MOVEC instruction.
See Section 5.5.3.1, “MMU Base Address Register (MMUBAR).”

5.2.3.9 Changes to ACRs and CACR
New ACR and CACR bits, Table 5-1, improve address granularity and supervisor mode protection. These

improvements are not necessary to implement the ColdFire MMU, but they improve memory
functionality for physical and virtual address environments.

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor 5-5

Table 5-1. New ACR and CACR Bits

Bits Name Description
ACRN[10] AMM Address mask mode. Determines access to the associated address space.
0 The ACR hit function is the same as previous versions, allowing control of a 16-Mbyte
or greater memory region.
1 The upper 8 bits of the address and ACR are compared without a mask function; bits
23-20 of the address and ACR are compared masked by ACR[19-16], allowing control
of a 1- to 16-Mbyte region.
Reset value is 0.
ACRN[3] SP Supervisor protect. Determines access to the associated address space.
0 Supervisor and user access allowed.
1 Only supervisor access allowed. Attempted user access causes an access error
exception.
Reset value is 0.
CACRJ[23] DDSP Default data supervisor protect. Determines access to the associated data space.
0 Supervisor and user access allowed.
1 Only supervisor access allowed. Attempted user access causes an access error
exception.
Reset value is 0.
CACR[7] DISP Default instruction supervisor protect. Determines access to the associated instruction
space.
0 Supervisor and user access allowed.
1 Only supervisor access allowed. Attempted user access causes access error exception
Reset value is 0.

5.2.3.10 ACR Address Improvements

ACRs provide a 16-Mbyte address window. For a given request address, if the ACR is valid and the request
mode matches the mode specified in the supervisor mode field, ACRN[S], hit determination is specified as

follows:
ACRx_Hit = 0;

if ((address[31:24] & ~ACRn[23:16]) == (ACRn[31:24] & ~ACRn[23:16]))

ACRx_Hit = 1;

With this hit function, ACRs can assign address attributes for user or supervisor requests to memory spaces
of at least 16 Mbytes (through the address mask). With the MMU definition, the ACR hit function is
improved by the address mask mode bit (ACRn[AMM)]), which supports finer address granularity. See

Table 5-1.

The revised hit determination becomes the following:

ACRx_Hit = 0;
if (ACRn[10] ==

D

if ((address[31-24] == ACRn[31-24])) &&
((address[23-20] & ~ACRn[19-16]) == (ACRn[23-20] & ~ACRn[19-161)))

ACRX_Hi't

else if (address[31-24]
ACRX_Hit

=1;

& ~ACRn[23-16]) == (ACRn[31-24] & ~ACRn[23-16]))

:1;

MCF547x Reference Manual, Rev. 5

5-6

Freescale Semiconductor

Debugging in a Virtual Environment

5.2.3.11 Supervisor Protection

Each instruction or data reference is either a supervisor or user access. The CPU’s status register supervisor
bit (SR[S]) determines the operating mode. New ACR and CACR bits protect supervisor space. See
Table 5-1.

5.3 Debugging in a Virtual Environment

To support debugging in a virtual environment, numerous enhancements are implemented in the ColdFire
debug architecture. These enhancements are collectively called Debug revision D and primarily relate to
the addition of an 8-bit address space identifier (ASID) to yield a 40-bit virtual address. This expansion
affects two major debug functions:

* The ASID is optionally included in the hardware breakpoint registers specification. For example,
the four PC breakpoint registers are expanded by 8 bits each, so that a specific ASID value can be
part of the breakpoint instruction address. Likewise, data address/data breakpoint registers are
expanded to include an ASID value. The new control registers define whether and how the ASID
is included in the breakpoint comparison trigger logic.

* The debug module implements the concept of ownership trace in which an ASID value can be
optionally displayed as part of real-time trace. When enabled, real-time trace displays instruction
addresses on any change-of-flow instruction that is not absolute or PC-relative. For Debug revision
D architecture, the address display is expanded to optionally include ASID contents, thus providing
the complete instruction virtual address on these instructions. Additionally, when a Sync_PC serial
BDM command is loaded from the external development system, the processor displays the
complete virtual instruction address, including the 8-bit ASID value.

The MMU control registers are accessible through serial BDM commands. See Chapter 8, “Debug
Support.”

5.4 Virtual Memory Architecture Processor Support

To support the MMU, enhancements have been made to the exception model, the stack pointers, and the
access error stack frame.

54.1 Precise Faults

To support demand-paging, all memory references require precise, recoverable faults. The ColdFire
instruction restart mechanism ensures that a faulted instruction restarts from the beginning of execution;
that is, no internal state information is saved when an exception occurs and none is restored when the
handler ends. Given the PC address defined in the exception stack frame, the processor reestablishes

program execution by transferring control to the given location as part of the RTE (return from exception)
instruction.

For a detailed description, see Section 3.9, “Precise Faults.”

5.4.2 Supervisor/User Stack Pointers
To provide the required isolation between these operating modes as dictated by a virtual memory

management scheme, a user stack pointer (A7-USP) is added. The appropriate stack pointer register (SSP,
USP) is accessed as a function of the processor’s operating mode.

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor 5-7

In addition, the following two privileged M68000 family instructions to load/store the USP are added to
the ColdFire instruction set architecture:

mov. 1 Ay,USP # move to USP: opcode = Ox4E6{0-7}
mov. 1 USP,Ax # move from USP: opcode = Ox4E6{8-F}

The address register number is encoded in the three low-order bits of the opcode.
These instructions are described in detail in Section 5.7, “MMU Instructions.”

5.4.3 Access Error Stack Frame Additions

ColdFire exceptions generate a standard 2-longword stack frame, signaling the contents of the SR and PC
at the time of the exception, the exception type, and a 4-bit fault status field (FS). The first longword
contains the 16-bit format/vector word (F/V) and the 16-bit status register. The second contains the 32-bit
program counter address of the faulted instruction.

31 28 27 26 25 18 17 16 15 0
A7 —>| FORMAT FS[3-2] | VEC[7-0] | FS[1-0] STATUS REGISTER
+0x04 PROGRAM COUNTER [31-0]

Figure 5-2. Exception Stack Frame

The FS field is used for access and address errors. To optimize TLB miss exception handling, new FS
encodings (Table 5-2) allow quick error classification.

Table 5-2. Fault Status Encodings

FS[3:0] Definition
0000 Not an access or address error
0001, 001x Reserved
0100 Error (for example, protection fault) on instruction fetch
0101 TLB miss on opword of instruction fetch (New in CF4e)
0110 TLB miss on extension word of instruction fetch (New in CF4e)
0111 IFP access error while executing in emulator mode (New in CF4e)
1000 Error on data write
1001 Attempted write of protected space
1010 TLB miss on data write (New in CF4e)
1011 Reserved
1100 Error on data read
1101 Attempted read, read-modify-write of protected space (New in CF4e)
1110 TLB miss on data read, or read-modify-write (New in CF4e)
1111 OEP access error while executing in emulator mode (New in CF4e)

MCF547x Reference Manual, Rev. 5

5-8 Freescale Semiconductor

MMU Definition

55 MMU Definition

The ColdFire MMU provides a virtual address, demand-paged memory architecture. The MMU supports
hardware address translation acceleration using software-managed TLBs. It enforces permission checking
on a per-memory request basis, and has control, status, and fault registers for MMU operation.

551 Effective Address Attribute Determination

The ColdFire core generates an effective memory address for all instruction fetches and data read and write
memory accesses. The previous ColdFire memory access control model was based strictly on physical
addresses. Every memory request address is a physical address that is analyzed by this memory access
control logic and assigned address attributes, which include the following:

e Cache mode

* SRAM enable information
* Write protect information

e Write mode information

These attributes control processing of the memory request. The address itself is not affected by memory
access control logic.

Instruction and data references base effective address attributes and access mode on the instruction type
and the effective address. Accesses are of the following two types:

» Special mode accesses, including interrupt acknowledges, reads/writes to program-visible control
registers (such as CACR, ROMBARs, RAMBARs, and ACRs), cache control commands
(CPUSHL and INTOUCH), and emulator mode operations. These accesses have the following
attributes:

— Non-cacheable

— Precise

— No write protection

Unless the CPU space/IACK mask bit is set, interrupt acknowledge cycles and emulator mode
operations are allowed to hitin RAMBARs and ROMBARs. All other operations are normal mode
accesses.

* Normal mode accesses. For these accesses, an effective cache mode, precision and write-protection
are calculated for each request.

For data, a normal mode access address is compared with the following priority, from highest to lowest:
RAMBARO, RAMBAR1, ROMBARO, ROMBAR1, ACRO0, and ACRL1. If no match is found, default
attributes in the CACR are used. The priority for instruction accesses is RAMBARO, RAMBARLI,
ROMBARO, ROMBAR1, ACR2, and ACR3. Again, if no match is found, default CACR attributes are
used.

Only the test-and-set (TAS) instruction can generate a normal mode access with implied cache mode and
precision. TAS is a special, byte-sized, read-modify-write instruction used in synchronization routines. A
TAS data access that does not hit in the RAMBARS is non-cacheable and precise. TAS uses the normal
effective write protection.

The ColdFire MMU is an optional enhancement to the memory access control. If the MMU is present and
enabled, it adds two factors for calculating effective address attributes:

» MMUBAR defines a memory-mapped, privileged data-only space with the highest priority in
effective address attribute calculation for the data (that is, the MMUBAR has priority over
RAMBARO).

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor 5-9

« If virtual mode is enabled, any normal mode access that does not hit in the MMUBAR,
RAMBARs, ROMBARSs, or ACRs is considered a normal mode virtual address request and
generates its access attributes from the MMU. For this case, the default CACR address attributes
are not used.

The MMU also uses TLB contents to perform virtual-to-physical address translation.

5.5.2 MMU Functionality

The MMU provides virtual-to-physical address translation and memory access control. The MMU consists
of memory-mapped, control, status, and fault registers, and a TLB that can be accessed through MMU
registers. Supervisor software can access these resources through MMUBAR. Software can control
address translation and access attributes of a virtual address by configuring MMU control registers and
loading the MMU’s TLB, which functions as a cache, associating virtual addresses to corresponding
physical addresses and providing access attributes. Each TLB entry maps a virtual page. Several page sizes
are supported. Features such as clear-all and probe-for-hit help maintain TLBs.

Fault-free, virtual address accesses that hit in the TLB incur no pipeline delay. Accesses that miss the TLB
or hit the TLB but violate an access attribute generate an access error exception. On an access error,
software can reference address and information registers in the MMU to retrieve data. Depending on the
fault source, software can obtain and load a new TLB entry, modify the attributes of an existing entry, or
abort the faulting process.

5.5.3 MMU Organization

Access to the MMU memory-mapped region is controlled by MMUBAR, a 32-bit supervisor control
register at 0x008 that is accessed using MOVEC or the serial BDM debug port. The ColdFire
Programmers Reference Manual describes the MOVEC instruction.

5.5.3.1 MMU Base Address Register (MMUBAR)

Figure 5-3 shows MMUBAR. The default reset state is an invalid MMUBAR, so that the MMU is disabled
and the memory-mapped space is not visible.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
R BA
w
Reset 0 0 0 0 0 0 0 0 0O 0O 0 oO 0 0 0 0
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
R 0 0 0 0 0 0 0 0 oOojo0|0]O 0 0 0 \%
w
Reset 0 0 0 0 0 0 0 0 0O 0 0 ©O 0 0 0 0
Reg CPU + 0x008
Addr

Figure 5-3. MMU Base Address Register (MMUBAR)

Table 5-3 describes MMU base address register fields.

MCF547x Reference Manual, Rev. 5

5-10 Freescale Semiconductor

MMU Definition

Table 5-3. MMUBAR Field Descriptions

Bits Name Description
31-16 BA Base address. Defines the base address for the 64-Kbyte address space mapped to the
MMU.
15-1 — Reserved, should be cleared. Writes are ignored and reads return zeros.
0 \% Valid. Indicates when MMUMBAR contents are valid. BA is not used unless V is set.
0 MMUBAR contents are not valid.
1 MMUBAR contents are valid.

55.3.2 MMU Memory Map

MMUBAR holds the base address for the 64-Kbyte MMU memory map, shown in Table 5-4. The MMU
memory map area is not visible unless the MMUBAR s valid and must be referenced aligned. A large
portion of the map is reserved for future use.

Table 5-4. MMU Memory Map

Offset from MMUBAR Name
+ 0x0000 MMU control register (MMUCR)
+ 0x0004 MMU operation register (MMUOR)
+ 0x0008 MMU status register (MMUSR)
+ 0x000C Reserved
+ 0x0010 MMU fault, test, or TLB address register (MMUAR)
+ 0x0014 MMU read/write TLB tag register (MMUTR)
+ 0x0018 MMU read/write TLB data register (MMUDR)

+ Ox001C-OXFFFC | Reserved!

1 May be used for implementation-specific information/control registers

The address space ID (ASID) is located in a CPU space control register. The 8-bit ASID value located in
the low order byte of a 32-bit supervisor control register, mapped into CPU space at address 0x003 and
accessed using a MOVEC instruction. The ColdFire Family Programmer’s Reference Manual describes
MOVEC.

This 8-bit field is the current user ASID. The ASID is an extension to the virtual address. Address space
0x00 may be reserved for supervisor mode. See address space mode functionality in Section 5.5.3.3,
“MMU Control Register (MMUCR).” The other 255 address spaces are used to tag user processes. The
TLB entry ASID values are compared to this value for user mode unless the TLB entry is marked shared
(MMUTR[SG] is set). The TLB entry ASID value may be compared to 0x00 for supervisor accesses.

5.5.3.3 MMU Control Register (MMUCR)
MMUCR, Figure 5-4, has the address space mode and virtual mode enable bits. The user must force

pipeline synchronization after writing to this register. Therefore, all writes to this register must be
immediately followed by a NOP instruction.

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor 5-11

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 OO0 |0]O 0 0 0
w
Reset 0 0 0 0 0 0 0 0 0O 0O 0 oO 0 0 0 0
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
R 0 0 0 0 0 0 0 0 OO0 |0]O 0 0 ASM | EN
w
Reset 0 0 0 0 0 0 0 0 0O 0O 0 oO 0 0 0 0
Reg MMUBAR + 0x000
Addr

Figure 5-4. MMU Control Register (MMUCR)

Table 5-5 describes MMUCR fields.
Table 5-5. MMUCR Field Descriptions

Bits Name Description
31-2 — Reserved, should be cleared. Writes are ignored and reads return zeros.
1 ASM Address space mode. Controls how the address space ID is used for TLB hits.

0 TLB entry ASID values are compared to the address space ID register value for user or
supervisor mode unless the TLB entry is marked shared (MMUTR[SG] = 1). The
address space ID register value is the effective address space for all requests,
supervisor and user.

1 Address space 0x00 is reserved for supervisor mode and the effective address space
is forced to 0x00 for all supervisor accesses. The other 255 address spaces are used to
tag user processes. The TLB entry ASID values are compared to the address space ID
register for user mode unless the TLB entry is marked shared (SG = 1). The TLB entry
ASID value is always compared to 0x00 for supervisor accesses. This allows two levels
of sharing. All users but not the supervisor share an entry if SG = 1and ASID | 0. All
users and the supervisor share an entry if SG =1 and ASID =0

0 EN Virtual mode enabled. Indicates when virtual mode is enabled.
0 Virtual mode is disabled.
1 Virtual mode is enabled.

5.5.3.4 MMU Operation Register (MMUOR)
Figure 5-5 shows the MMUOR.

MCF547x Reference Manual, Rev. 5

5-12 Freescale Semiconductor

MMU Definition

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
R AA
w
Reset| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
R{ O 0 0 0 0 0 0O |STLB|CA|CNL|CAS|ITLB| ADR | R/W | ACC | UAA
w
Reset| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Reg MMUBAR + 0x004
Addr

Figure 5-5. MMU Operation Register (MMUOR)

Table 5-6 describes MMUOR fields.

Table 5-6. MMUOR Field Descriptions

Bits

Name

Description

31-16

AA

TLB allocation address. This read-only field is maintained by MMU hardware. Its range and
format depend on the TLB implementation (specific TLB size in entries, associativity, and
organization). The access TLB function can use AA to read or write the addressed TLB
entry. The MMU loads AA on the following three events:

* On DTLB access errors, it loads the address of the TLB entry that caused the error.

¢ If UAA is set, it loads the address of the TLB entry chosen by the MMU for replacement.

« If STLB is set, it uses the data in MMUAR to search the TLB and if the TLB hits, loads
the address of the TLB entry that hits, or if the TLB misses, loads the TLB entry chosen
by the MMU for replacement.

The MMU never picks a locked entry for replacement, and TLB hits of locked entries do not

update hardware replacement algorithm information. This is so access error handlers

mapped with locked TLB entries do not influence the replacement algorithm. Further, TLB
search operations do not update the hardware replacement algorithm information while

TLB writes (loads) do update the hardware replacement algorithm information. The

algorithm used to choose the allocation address depends on the TLB implementation

(such as LRU, round-robin, pseudo-random).

15-9

Reserved, should be cleared. Writes are ignored and reads return zeros.

STLB

Search TLB. STLB always reads as zero.

0 No operation

1 The MMU searches the TLB using data in MMUAR. This operation updates the probe
TLB hit bit in the status register plus loads the AA field as described above.

CA

Clear all TLB entries. CA always reads as zero.
0 No operation
1 Clear all TLB entries and all hardware TLB replacement algorithm information.

CNL

Clear all non-locked TLB entries. Setting CNL clears all TLB entries that do not have their
locked bit set. CNL always reads as zero.

0 No operation

1 Clear all non-locked TLB entries.

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor

5-13

Table 5-6. MMUOR Field Descriptions (Continued)

Bits Name Description

5 CAS Clear all non-locked TLB entries that match ASID. CAS is always reads as a zero.
0 No operation
1 Clear all non-locked TLB entries that match ASID register.

4 ITLB ITLB operation. Used by TLB search and access operations that use the TLB allocation
address.

0 The MMU uses the DTLB to search or update the allocation address.

1 The MMU uses the ITLB for searches and updates of the allocation address.

3 ADR TLB address select. Indicates which address to use when accessing the TLB.
0 Use the TLB allocation address for the TLB address.
1 Use MMUAR for the TLB address.

2 R/W TLB access read/write select. Indicates whether to do a read or a write when accessing
the TLB.
0 Write
1 Read
1 ACC MMU TLB access. This bit always reads as a zero. STLB is used for search operations.

0 No operation. ACC should be a zero to search the TLB.

1 The MMU reads or writes the TLB depending on R/W. For TLB reads, TLB tag and data
results are loaded into MMUTR and MMUDR. For TLB writes, the contents of these
registers are written to the TLB. The TLB is accessed using the TLB allocation address
if ADR is zero or using MMUAR if ADR is set.

0 UAA Update allocation address. UAA always reads as a zero.

0 No operation

1 MMU updates the allocation address field with the MMU’s choice for the allocation
address in the ITLB or DTLB depending on the ITLB instruction operation bit.

5.5.3.5 MMU Status Register (MMUSR)
MMUSR, Figure 5-6, is updated on all data access faults and search TLB operations.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
R O 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
R O 0 0 0 0 0 0 0 0 0 |SPF| RF | WF 0 HIT 0

Reset| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reg MMUBAR + 0x008
Addr

Figure 5-6. MMU Status Register (MMUSR)

Table 5-7 describes MMUSR fields.

MCF547x Reference Manual, Rev. 5

5-14 Freescale Semiconductor

MMU Definition

Table 5-7. MMUSR Field Descriptions

Bits Name Description
31-6 — Reserved, should be cleared. Writes are ignored and reads return zeros.
5 SPF Supervisor protect fault. Indicates if the last data fault was a user mode access that hit in

a TLB entry that had its supervisor protect bit set.
0 Last data access fault did not have a supervisor protect fault.
1 Last data access fault had a supervisor protect fault.

4 RF Read access fault. Indicates if the last data fault was an data read access that hitin a TLB
entry that did not have its read bit set.

0 Last data access fault did not have a read protect fault.

1 Last data access fault had a read protect fault.

3 WF Write access fault. Indicates if the last data fault was an data write access that hitin a TLB
entry that did not have its write bit set.

0 Last data access fault did not have a write protect fault.

1 Last data access fault had a write protect fault.

2 — Reserved, should be cleared. Writes are ignored and reads return zeros.
1 HIT Search TLB hit. Indicates if the last data fault or the last search TLB operation hit in the
TLB.

0 Last data access fault or search TLB operation did not hit in the TLB.
1 Last data access fault or search TLB operation hit in the TLB.

0 — Reserved, should be cleared. Writes are ignored and reads return zeros.

5.5.3.6 MMU Fault, Test, or TLB Address Register (MMUAR)
The MMUAR format, Figure 5-7, depends on how the register is used.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
R FA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reset| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reg MMUBAR + 0x010
Addr

Figure 5-7. MMU Fault, Test, or TLB Address Register (MMUAR)
Table 5-8 describes MMUAR fields.

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor 5-15

Table 5-8. MMUAR Field Descriptions

Bits

Name

Description

310

FA

Form address. Written by the MMU with the virtual address on DTLB misses and access
faults. For this case, all 32 bits are address bits. This register may be written with a virtual
address and address attribute information for searching the TLB (MMUCR[STLB]). For this
case, FA[31-1] are the virtual page number and FA[Q] is the supervisor bit. The current
ASID is used for the TLB search. MMUAR can also be written with a TLB address for use
with the access TLB function (using MMUCRJ[ACC]).

5.5.3.7

address or MMUAR.

MMUTR, Figure 5-8, contains the virtual address tag, the address space ID (ASID), a shared page

MMU Read/Write Tag and Data Entry Registers (MMUTR and MMUDR)

Each TLB entry consists of a 32-bit TLB tag entry and a 32-bit TLB data entry. TLB entries are referenced
through MMUTR and MMUDR. For read TLB accesses, the contents of the TLB tag and data entries
referenced by the allocation address or MMUAR are loaded in MMUTR and MMUDR. TLB write
accesses place MMUTR and MMUDR contents into the TLB tag and data entries defined by the allocation

indicator, and the valid bit.

31 30 29 28 27 26 25 24 23 2 21 20 19 18 17 16
R VA
w
Reset| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
R VA ID SG \%
w
Reset| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Reg MMUBAR + 0x014
Addr

Figure 5-8. MMU Read/Write TLB Tag Register (MMUTR)

Table 5-9 describes MMUTR fields.

Table 5-9. MMUTR Field Descriptions

Bits Name Description
31-10 VA Virtual address. Defines the virtual address mapped by this entry. The number of bits used
in the TLB hit determination depends on the page size field in the corresponding TLB data
entry.
9-2 ID Address space ID (ASID). This extension to the virtual address marks this entry as part of

1 of 256 possible address spaces. Address space 0x00 can be reserved for supervisor
mode. The other 255 address spaces are used to tag user processes. TLB entry ASID
values are compared to the ASID register value for user mode unless the TLB entry is
marked shared (SG = 1). The TLB entry ASID value may be compared to 0x00 for
supervisor accesses or to the ASID. The description of MMUCR[ASM] in Table 5-5 gives
details on supervisor mode and ASID compares.

MCF547x Reference Manual, Rev. 5

5-16

Freescale Semiconductor

MMU Definition

Table 5-9. MMUTR Field Descriptions (Continued)

Bits

Name

Description

SG

Shared global. Indicates when the entry is shared among user address spaces. If an entry
is shared, its ASID is not part of the TLB hit determination for user accesses.

0 This entry is not shared globally.

1 This entry is shared globally.

Note that the ASID can be used to determine supervisor mode hits to allow two sharing
levels. If SG and MMUCR[ASM] are set and the ASID is not zero, all users (but not the
supervisor) share an entry. If SG and MMUCR[ASM] are set and the ASID is zero, all users
and the supervisor share an entry. The description of ASM in Table 5-5 details supervisor
mode and ASID compares.

Valid. Indicates when the entry is valid. Only valid entries generate a TLB hit.
0 Entry is not valid.
1 Entry is valid.

MMUDR, Figure 5-9, contains the physical address, page size, cache mode field, supervisor-protect bit,

read, write, execute permission bits, and lock-entry bit.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
R PA

w

Reset| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R PA SZ CM SP R w X LK 0
w

Reset| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Reg MMUBAR + 0x014

Addr

Figure 5-9. MMU Read/Write TLB Data Register (MMUDR)

Table 5-10 describes MMUDR fields.

Table 5-10. MMUDR Field Descriptions

Bits Name Descriptions
31-10 PA Physical address. Defines the physical address which is mapped by this entry. The number
of bits used to build the effective physical address if this TLB entry hits depends on the
page size field.
9-8 SZ Page size. Page size for this entry:

00 1 Mbyte: VA[31-20] used for TLB hit
01 4 Kbytes VA[31-12] used for TLB hit
10 8 Kbytes VA[31-13] used for TLB hit
11 1 Kbyte VA[31-10] used for TLB hit

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor

Table 5-10. MMUDR Field Descriptions (Continued)

Bits Name Descriptions

7-6 CM Cache mode. If a Harvard TLB implementation is used, CMO is a don't care for the ITLB.
CM is ignored on writes and always reads as zero for the ITLB.

Instruction cache modes:

1x Page is non-cacheable.

Ox Page is cacheable.

Data cache modes

00 Page is cacheable writethrough.

01 Page is cacheable copyback.

10 Page is non-cacheable precise.

11 Page is non-cacheable imprecise.

5 SP Supervisor protect. Controls user mode access to the page mapped by this entry.

0 Entry is not supervisor protected.

1 Entry is supervisor protected. An attempted user mode access that matches this entry
generates an access error exception.

4 R Read access enable. Indicates if data read accesses to this entry are allowed. If a Harvard

TLB implementation is used, this bit is a don’t care for the ITLB. This bit is ignored on writes

and always reads as zero for the ITLB.

0 Do not allow data read accesses. Attempted data read accesses that match this entry
generate an access error exception.

1 Allow data read accesses.

3 W Write access enable. Indicates if data write accesses are allowed to this entry. If separate

ITLB and DTLBS) are used, W is a don’t care for the ITLB. W is ignored on writes and reads

as zero for the ITLB.

0 Do not allow data write accesses. Attempted data write accesses that match this entry
generate an access error exception.

1 Allow data write accesses.

2 X Execute access enable. Indicates if instruction fetches to this entry are allowed. If separate

ITLB and DTLBs are is used, X is a don’t care for the DTLB. X is ignored on writes and

reads as zero for the DTLB.

0 Do not allow instruction fetches. Attempted instruction fetches that match this entry
cause an access error exception.

1 Allow instruction fetch accesses.

1 LK Lock entry bit. Indicates if this entry is included in the replacement algorithm. TLB hits of
locked entries do not update replacement algorithm information.

0 Include this entry when determining the best entry for a TLB allocation.

1 Do not allow this entry to be selected by the replacement algorithm.

0 — Reserved, should be cleared. Writes are ignored and reads return zeros.

554 MMU TLB
Each TLB entry consists of two 32-bit fields. The first is the TLB tag entry, and the second is the TLB data

entry. TLB size and organization are implementation dependent. TLB entries can be read and written
through MMU registers. TLB contents are unaffected by reset.

MCF547x Reference Manual, Rev. 5

5-18 Freescale Semiconductor

MMU Definition

55,5 MMU Operation

The processor sends instruction fetch requests and data read/write requests to the MMU in the instruction
and operand address generation cycles (IAG and OAG). The controller and memories occupy the next two
pipeline stages, instruction fetch cycles 1 and 2 (IC1 and IC2) and operand fetch cycles 1 and 2 (OC1 and
OC2). For late writes, optional data pipeline stages are added to the controller as well as any writable
memories.

Table 5-11 shows the association between memory pipeline stages and the processor’s pipeline structures,
shown in Figure 5-1.

Table 5-11. Version 4 Memory Pipelines

Memory Pipeline Stage Instruction Fetch Pipeline | Operand Execution Pipeline
J stage IAG OAG
KC1 stage IC1 OC1
KC2 stage IC2 OoC2
Operand execute stage n/a EX
Late-write stage n/a DA

Version 4 use the same 2-cycle read pipeline developed for Version 3. Each has 32-bit address and 32-bit
read data paths. Version 4 uses synchronous memory elements for all memory control units. To support
this, certain control information and all address bits are sent on the at the end of the cycle before the initial
bus access cycle (The data has an additional 32-bit write data path). For processor store operations,
Version 4 ColdFire uses a late-write strategy, which can require 2 additional data cycles. This strategy
yields the pipeline behavior described in Table 5-12.

Table 5-12. Pipeline Cycles

Cycle Description

J Control and partial address broadcast (to start synchronous memories)

KC1 Complete address and control broadcast plus MMU information. It is during this cycle that all memory
element read operations are performed; that is, memory arrays are accessed.

KC2 Select appropriate memory as source, return data to processor, handle cache misses or hold pipeline
as needed.

EX Optional write stage, pipeline address and control for store operations.

DA Data available for stores from processor; memory element update occurs in the next cycle.

The contains two independent memory unit access controllers and two independent controllers. Each
instruction and data is analyzed to see which, if any, controller is referenced. This information, along with
cache mode, store precision, and fault information, is sourced during KC1.

The optional MMU is referenced concurrently with the memory unit access controllers. It has two
independent control sections to simultaneously process an instruction and data request. Figure 5-1 shows
how the MMU and memory unit access controllers fit in the pipeline. As the diagram shows, core address
and attributes are used to access the mapping registers and the MMU. By the middle of the KC1 cycle, the
memory address is available along with its corresponding access control.

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor 5-19

Figure 5-10 shows more details of the MMU structure. The TLB is accessed at the beginning of the KC1
pipeline stage so the resulting physical address can be sourced to the cache controllers to factor into the
cache hit/miss determination. This is required because caches are virtually indexed but physically mapped.

N1 JADDR, J Control —> To memory controllers
J
/ / /
Memory unit access control
eﬁ'{r?etsag Eﬁ?riggta (MMUBAR, RAMBARSs, ROMBARS,
ACRs, CACR priority hit logic)
+ YYVYY
Compg—>() To control for TLB miss
logic
TLB hit
entry
data
KC1
TLB Hit Translated address Untranslated address
MMU'’s access control mapping register’s
¢ access control
To control for TLB miss
logic
\ A |
-«— Mapping register hit
or special mode access
To memory controllers plus
T bus interface
KADDR_KC1
LA KC1 cycle access control

Figure 5-10. Address and Attributes Generation

56 MMU Implementation

The MMU implements a 64-entry full-associative Harvard TLB architecture with 32-entry ITLB and
DTLB. This section provides more details of this specific TLB implementation. This section details the
operation and looks at the size, frequency, miss rate, and miss recovery time of this specific TLB
implementation.

56.1 TLB Address Fields

Because the TLB has a total of 64 entries (32 each for the ITLB and DTLB), a 6-bit address field is
necessary. TLB addresses 0-31 reference the ITLB, and TLB addresses 32—63 reference the DTLB.

In the MMUOR, bits 0 through 5 of the TLB allocation address (AA[5-0]) have this address format for
CF4e. The remaining TLB allocation address bits (AA[15-6]) are ignored on updates and always read as
zero.

MCF547x Reference Manual, Rev. 5

5-20 Freescale Semiconductor

MMU Implementation

When MMUAR is used for a TLB address, bits FA[5-0] also have this address format for CF4e. The
remaining form address bits (FA[31-6]) are ignored when this register is being used for a TLB address.

5.6.2 TLB Replacement Algorithm

The instruction and data TLBs provide low-latency access to recently used instruction and operand
translation information. CF4e ITLBs and DTLBs are 32-entry fully associative caches. The 32 ITLB
entries are searched on each instruction reference; the 32 DTLB entries are searched on each operand
reference.

CF4e TLBs are software controlled. The TLB clear-all function clears valid bits on every TLB entry and
resets the replacement logic. A new valid entry is loaded in the TLBs may be designated as locked and
unavailable for allocation. TLB hits to locked entries do not update replacement algorithm information.

When a new TLB entry needs to be allocated, the user can specify the exact TLB entry to be updated
(through MMUOR[ADR] and MMUAR) or let TLB hardware pick the entry to update based on the
replacement algorithm. A pseudo-least-recently used (PLRU) algorithm picks the entry to be replaced on
a TLB miss. The algorithm works as follows:

» If any element is empty (non-valid), use the lowest empty element as the allocate entry (that is,
entry 0 before 1, 2, 3, and so on).

» If all entries are valid, use the entry indicated by the PLRU as the allocate entry.

The PLRU algorithm uses 31 most-recently used state bits per TLB to track the TLB hit history. Table 5-13
lists these state bits.

Table 5-13. PLRU State Bits

State Bits Meaning
rdRecent31To16 A one indicates 31To16 is more recent than 15To00
rdRecent31To24 A one indicates 31To24 is more recent than 23To16
rdRecent15To08 A one indicates 15To08 is more recent than 07To00
rdRecent31To28 A one indicates 31To28 is more recent than 27To024
rdRecent23To20 A one indicates 23To20 is more recent than 19To16
rdRecent15To12 A one indicates 15To12 is more recent than 11To08
rdRecent07To04 A one indicates 07To04 is more recent than 03To00
rdRecent31To30 A one indicates 31To30 is more recent than 297028
rdRecent27To26 A one indicates 27T026 is more recent than 25To24
rdRecent23To22 A one indicates 23To22 is more recent than 217020
rdRecent19To18 A one indicates 19To18 is more recent than 177016
rdRecent15To14 A one indicates 15To14 is more recent than 13To12
rdRecent11To10 A one indicates 11To10 is more recent than 09To08
rdRecent07To06 A one indicates 07To06 is more recent than 05To04
rdRecent03To02 A one indicates 03To02 is more recent than 01To00

rdRecent31 A one indicates 31 is more recent than 30

rdRecent29 A one indicates 29 is more recent than 28

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor

5-21

Table 5-13. PLRU State Bits (Continued)

State Bits Meaning

rdRecent27 A one indicates 27 is more recent than 26
rdRecent25 A one indicates 25 is more recent than 24
rdRecent23 A one indicates 23 is more recent than 22
rdRecent21 A one indicates 21 is more recent than 20
rdRecent19 A one indicates 19 is more recent than 18
rdRecent17 A one indicates 17 is more recent than 16
rdRecent15 A one indicates 15 is more recent than 14
rdRecent13 A one indicates 13 is more recent than 12
rdRecent11 A one indicates 11 is more recent than 10
rdRecent09 A one indicates 09 is more recent than 08
rdRecent07 A one indicates 07 is more recent than 06
rdRecent05 A one indicates 05 is more recent than 04
rdRecent03 A one indicates 03 is more recent than 02
rdRecent01 A one indicates 01 is more recent than 00

Binary state bits are updated on all TLB write (load) operations, as well as normal ITLB and DTLB hits
of non-locked entries. Also, if all entries in a binary state are locked, than that state is always set. That is,
if entries 15, 14, 13, and 12 were locked, LRU state bit rdRecent15To14 is forced to one.

For a completely valid TLB, binary state information determines the LRU entry. The CF4e replacement
algorithm is deterministic and, for the case of a full TLB (with no locked entries and always touching new
pages), the replacement entry repeats every 32 TLB loads.

5.6.3 TLB Locked Entries

Figure 5-11 is a ColdFire MMU Harvard TLB block diagram.

For TLB miss faults, the instruction restart model completely reexecutes an instruction on returning from
the exception handler. An instruction can touch two instruction pages (a 32- or 48-bit instruction can
straddle two pages) or four data pages (a memory-to-memory word or longword move where misaligned
source and destination operands straddle two pages). Therefore, one instruction may take two ITLB misses
and allocate two ITLB pages before completion. Likewise, one instruction may require four DTLB misses
and allocate four DTLB pages. Because of this, a pool of unlocked TLB entries must be available if virtual
memory is used.

The above examples show the fewest entries needed to guarantee an instruction can complete execution.
For good MMU performance, more unlocked TLB entries should be available.

MCF547x Reference Manual, Rev. 5

5-22 Freescale Semiconductor

A
MMU Instructions
[~"~" < Current address space ID (ASID)
J -<«——— |nstruction or data address and attributes
TLB Tai TLB Tag TLB Tai TLB Tag
Entry 3 ®®e® ! Entry0 Entry 3 ®®® ! Entry0
Y \
KC1 YVYY YVYY
| Compare| e o @ | Compare
Y
Y Y -l
Instruction or data hit select
L

To control for instruction or DTLB miss

IC1 or OC1 translated address
logic

IC1 or OC1 access control
Figure 5-11. Version 4 ColdFire MMU Harvard TLB

5.7 MMU Instructions

The MOVE to USP and MOVE from USP instructions have been added for accessing the USP. Refer to
the ColdFire Programmer’s Reference Manual for more information.

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor 5-23

MCF547x Reference Manual, Rev. 5

5-24 Freescale Semiconductor

Chapter 6
Floating-Point Unit (FPU)

6.1 Introduction

This chapter describes instructions implemented in the floating-point unit (FPU) designed for use with the
ColdFire family of microprocessors. The FPU conforms to the American National Standards Institute
(ANSI)/Institute of Electrical and Electronics Engineers (IEEE) Standard for Binary Floating-Point
Arithmetic (ANSI/IEEE Standard 754).

The hardware unit is optimized for real-time execution with exceptions disabled and default results
provided for specific operations, operands, and number types. The FPU does not support all IEEE-754
number types and operations in hardware. Exceptions can be enabled to support these cases in software.

6.1.1 Overview

The FPU operates on 64-bit, double-precision, floating-point data and supports single-precision and signed
integer input operands. The FPU programming model is like that in the MC68060 microprocessor. The
FPU is intended to accelerate the performance of certain classes of embedded applications, especially
those requiring high-speed floating-point arithmetic computations. See Section 6.7.3, “Key Differences
between ColdFire and M68000 FPU Programming Models.”

The FPU appears as another execute engine at the bottom stages of the operand execution pipeline (OEP),
using operands from a dual-ported register file.

Setting bit 4 in the cache control register (CACR[DF]) disables the FPU. If CACR[DF] is cleared, all FPU
instructions are issued and executed, otherwise the processor responds with an unimplemented line-F
instruction exception (vector 11).

Operating systems often assume user applications are integer-only (to minimize the time required by save
context) by setting CACR[DF] at process initiation. If the application includes floating-point instructions,
the attempted execution of the first FP instruction generates the unimplemented line-F exception, which
signals the kernel that the FPU registers must be included in the context for the application. The application
then continues execution with CACR[DF] cleared to enable FPU execution.

6.1.1.1 Notational Conventions

Table 6-1 defines notational conventions used in this chapter.
Table 6-1. Notational Conventions

Symbol Description

Single- and Double-Precision Operand Operations

+ Arithmetic addition or postincrement indicator

- Arithmetic subtraction or predecrement indicator

x Arithmetic multiplication

+ Arithmetic division or conjunction symbol

~ Invert, operand is logically complemented. An overbar, , is also used for this operation.

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor 6-1

Table 6-1. Notational Conventions (Continued)

Symbol Description
& Logical AND
| Logical OR
- Source operand is moved to destination operand
<op> Any double-operand operation
<operand>tested |Operand is compared to zero and the condition codes are set appropriately

sign-extended

All bits of the upper portion are made equal to the high-order bit of the lower portion

Other Operations

If <condition>
then <operations>
else <operations>

Test the condition. If true, the operations after then are performed. If the condition is false and the
optional else clause is present, the operations after else are performed. If the condition is false
and else is omitted, the instruction performs no operation. Refer to the Bcc instruction description
as an example.

Register Specifications

An Address register n (example: A3 is address register 3)
Ay, Ax Source and destination address registers, respectively

Dn Data register n (example: D3 is data register 3)
Dy,Dx Source and destination data registers, respectively
FPCR Floating-point control register
FPIAR Floating-point instruction address register

FPn Floating-point data register n (example: FP3 is FPU data register 3)
FPSR Floating-point status register

FPy,FPx Source and destination floating-point data registers, respectively

PC Program counter

Rn Address or data register

Rx Destination register

Ry Source register

Xi Index register

Table 6-2 describes addressing modes and syntax for floating-point instructions.

MCF547x Reference Manual, Rev. 5

6-2

Freescale Semiconductor

Operand Data Formats and Types

Table 6-2. Floating-Point Addressing Modes

Addressing Modes Syntax
Register direct
Address register direct Dy
Address register direct Ay
Register indirect
Address register indirect (Ay)
Address register indirect with postincrement —(Ay)
Address register indirect with predecrement (d16.AY)
Address register indirect with displacement
Program counter indirect with displacement (d16,PC)

6.2 Operand Data Formats and Types

The FPU supports signed byte, word, and longword integer formats, which are identical to those supported
by the integer unit. The FPU also supports single- and double-precision binary floating-point formats that
fully comply with the IEEE-754 standard.

6.2.1 Signed-Integer Data Formats

The FPU supports 8-bit byte (B), 16-bit word (W), and 32-bit longword (L) integer data formats.

6.2.2 Floating-Point Data Formats

Figure 6-1 shows the two binary floating-point data formats.

31 30 22 0
S 8-Bit Exponent 23-Bit Fraction Single
\— Sign of Mantissa
63 62 51 0
S 11-Bit Exponent 52-Bit Fraction Double

\— Sign of Mantissa

Figure 6-1. Floating-Point Data Formats

Note that, throughout this chapter, a mantissa is defined as the concatenation of an integer bit, the binary
point, and a fraction. A fraction is the term designating the bits to the right of the binary point in the
mantissa.

Mantissa

(integer bit).(fraction)

Figure 6-2. Mantissa
The integer bit is implied to be set for normalized numbers and infinities, clear for zeros and denormalized

numbers. For not-a-numbers (NANS), the integer bit is ignored. The exponent in both floating-point
formats is an unsigned binary integer with an implied bias added to it. Subtracting the bias from exponent

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor 6-3

yields a signed, two’s complement power of two. This represents the magnitude of a normalized
floating-point number when multiplied by the mantissa.

By definition, a normalized mantissa always takes values starting from 1.0 and going up to, but not
including, 2.0; that is, [1.0...2.0).

6.2.3 Floating-Point Data Types

Each floating-point data format supports five unique data types: normalized numbers, zeros, infinities,
NANSs, and denormalized numbers. The normalized data type, Figure 6-3, never uses the maximum or
minimum exponent value for a given format.

6.2.3.1 Normalized Numbers

Normalized numbers include all positive or negative numbers with exponents between the maximum and
minimum values. For single- and double-precision normalized numbers, the implied integer bit is one and
the exponent can be zero.

Min < Exponent < Max Fraction = Any bit pattern

L—— Sign of Mantissa, 0 or 1
Figure 6-3. Normalized Number Format

6.2.3.2 Zeros

Zeros can be positive or negative and represent real values, + 0.0 and — 0.0. See Figure 6-4.

Exponent=0 Fraction =0

—— Sign of Mantissa, 0 or 1
Figure 6-4. Zero Format

6.2.3.3 Infinities

Infinities can be positive or negative and represent real values that exceed the overflow threshold. A
result’s exponent greater than or equal to the maximum exponent value indicates an overflow for a given
data format and operation. This overflow description ignores the effects of rounding and the
user-selectable rounding models. For single- and double-precision infinities, the fraction is a zero. See
Figure 6-5.

Exponent = Maximum Fraction =0

L——Sign of Mantissa, O or 1
Figure 6-5. Infinity Format

MCF547x Reference Manual, Rev. 5

6-4 Freescale Semiconductor

Operand Data Formats and Types

6.2.3.4 Not-A-Number

When created by the FPU, NANSs represent the results of operations having no mathematical interpretation,
such as infinity divided by infinity. Operations using a NAN operand as an input return a NAN result.
User-created NANSs can protect against uninitialized variables and arrays or can represent user-defined
data types. See Figure 6-6.

Exponent = Maximum Fraction = Any nonzero bit pattern

L—— Sign of Mantissa, 0 or 1
Figure 6-6. Not-a-Number Format

If an input operand to an operation is a NAN, the result is an FPU-created default NAN. When the FPU
creates a NAN, the NAN always contains the same bit pattern in the fraction: all fraction bits are ones and
the sign bit is zero. When the user creates a NAN, any nonzero bit pattern can be stored in the fraction and
the sign bit.

6.2.3.5 Denormalized Numbers

Denormalized numbers represent real values near the underflow threshold. Denormalized numbers can be
positive or negative. For denormalized numbers in single- and double-precision, the implied integer bit is
a zero. See Figure 6-7.

Exponent=0 Fraction = Any nonzero bit pattern

L—— Sign of Mantissa, 0 or 1
Figure 6-7. Denormalized Number Format

Traditionally, the detection of underflow causes floating-point number systems to perform a flush-to-zero.
The IEEE-754 standard implements gradual underflow: the result mantissa is shifted right (denormalized)
while the result exponent is incremented until reaching the minimum value. If all the mantissa bits of the
result are shifted off to the right during this denormalization, the result becomes zero.

Denormalized numbers are not supported directly in the hardware of this implementation but can be
handled in software if needed (software for the input denorm exception could be written to handle
denormalized input operands, and software for the underflow exception could create denormalized
numbers). If the input denorm exception is disabled, all denormalized numbers are treated as zeros.

Table 6-3 summarizes the data type specifications for byte, word, longword, single- and double-precision
data formats.

Table 6-3. Real Format Summary

Parameter Single-Precision Double-Precision

Data Format 8130 2322 0 6362 52 51 0
[s|_e]| [e T

Field Size in Bits

Sign (s) 1 1

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor 6-5

Table 6-3. Real Format Summary (Continued)

Parameter Single-Precision Double-Precision
Biased exponent (e) 8 11
Fraction (f) 23 52
Total 32 64
Interpretation of Sign
Positive fraction s=0 s=0
Negative fraction s=1 s=1

Normalized Numbers

Bias of biased exponent

+127 (OX7F)

+1023 (OX3FF)

Range of biased exponent

0 < e < 255 (OXFF)

0 < e < 2047 (OX7FF)

Range of fraction

Zero or Nonzero

Zero or Nonzero

Mantissa

1f

1f

Relation to representation of real numbers

(-1)Sx 267127 1 ¢

(~1)S x 2671023 , 1 £

Denormalized Numbers

Biased exponent format minimum

0 (0x00)

0 (0x000)

Bias of biased exponent

+126 (OX7E)

+1022 (OX3FE)

Range of fraction

Nonzero

Nonzero

Mantissa

0.f

0.f

Relation to representation of real numbers

(-1)s x 27126 1 0.f

(-1)8 x 271022, 0 f

Signed Zeros

Biased exponent format minimum

0 (0x00)

0 (0x00)

Mantissa

0.f=0.0

0.f=0.0

Signed Infinities

Biased exponent format maximum 255 (OxFF) 2047 (OX7FF)

Mantissa 0.f=0.0 0.f=0.0
NANs

Sign Don'’t Care Oor1l

Biased exponent format maximum 255 (OxFF) 2047 (OX7FF)

Fraction Nonzero Nonzero

Representation of Fraction
Nonzero Bit Pattern Created by User
Fraction When Created by FPU

XXXXX. .. XXXX
11111...1111

XXXXX. .. XXXX
11111...1111

MCF547x Reference Manual, Rev. 5

6-6

Freescale Semiconductor

Register Definition

Table 6-3. Real Format Summary (Continued)

Parameter Single-Precision Double-Precision

Approximate Ranges

Maximum Positive Normalized 3.4 x 1038 1.8 x 10308
Minimum Positive Normalized 1.2 x 10738 2.2 x 107308
Minimum Positive Denormalized 1.4 x 1074 4.9 x 107324

6.3 Register Definition

The programmer’s model for the FPU consists of the following:
» Eight 64-bit floating-point data registers (FPO-FP7)
* One 32-bit floating-point control register (FPCR)
» One 32-bit floating-point status register (FPSR)
* One 32-bit floating-point instruction address register (FPIAR)

Figure 6-8 shows the FPU programming model.

63 0

FPO Floating-point data registers
FP1

FP2

FP3

FP4

FP5

FP6

FP7

FPCR Floating-point control register
FPSR Floating-point status register
FPIAR Floating-point instruction address register

Figure 6-8. Floating-Point Programmer’s Model

6.3.1 Floating-Point Data Registers (FPO-FP7)

Floating-point data registers are analogous to the integer data registers for the 68K/ColdFire family. They
always contain numbers in double-precision format, even though the operand may be a single-precision
value used in a single-precision calculation. All external operands, regardless of the source data format,
are converted to double-precision format before being used in any calculation or being stored in a
floating-point data register. A reset or a null-restore operation sets FPO—FP7 to positive, nonsignaling
NANS.

6.3.2 Floating-Point Control Register (FPCR)

The FPCR, Figure 6-9, contains an exception enable byte (EE) and a mode control byte (MC). Each EE
bit corresponds to a floating-point exception class. The user can separately enable traps for each class of
floating-point exceptions. The MC bits control FPU operating modes.

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor 6-7

The user can read or write to FPCR using FMOVE or FRESTORE. A processor reset or a restore operation
of the null state clears the FPCR. When this register is cleared, the FPU never generates exceptions.

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

Rl O 0 0 0 0 0 0 0 0 0 0 |O 0 0 0 0
W
Reset| 0 0 0 0 0 0 0 0 0 0 0 O 0 0 0 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Exception Enable Byte (EE) Mode Control Byte (MC)
R|{BSUN | INAN | OPERR |OVFL [UNFL| DZ |INEX | IDE 0 [PREC RND 0 0 0 0
\W
Reset| 0 0 0 0 0 0 0 0 0 0 0 O 0 0 0 0
Reg CPU + 0x824
Addr

Figure 6-9. Floating-Point Control Register (FPCR)

Table 6-4 describes FPCR fields.

Table 6-4. FPCR Field Descriptions

Bits Field Description
31-16 — Reserved, should be cleared.
15 BSUN Branch set on unordered
14 INAN Input not-a-number
13 OPERR | Operand error
12 OVFL Overflow
11 UNFL Underflow
10 Dz Divide by zero
9 INEX Inexact operation
8 IDE Input denormalized
7 — Reserved, should be cleared.
6 PREC Rounding precision
0 Double (D)
1 Single (S)
5-4 RND Rounding mode
00 To nearest (RN)
01 To zero (RZ)
10 To minus infinity (RM)
11 To plus infinity (RP)
3-0 — Reserved, should be cleared.

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor

Register Definition

6.3.3 Floating-Point Status Register (FPSR)

The FPSR, Figure 6-10, contains a floating-point condition code byte (FPCC), a floating-point exception
status byte (EXC), and a floating-point accrued exception byte (AEXC). The user can read or write all
FPSR bits. Execution of most floating-point instructions modifies FPSR. FPSR is loaded using FMOVE
or FRESTORE. A processor reset or a restore operation of the null state clears the FPSR.

The floating-point condition code byte contains 4 condition code bits that are set after completion of all
arithmetic instructions involving the floating-point data registers. The floating-point store operation,
FMOVEM, and move system control register instructions do not affect the FPCC.

The exception status byte contains a bit for each floating-point exception that might have occurred during
the most recent arithmetic instruction or move operation. This byte is cleared at the start of all operations
that generate floating-point exceptions (except FBcc only affects BSUN and that only for nonaware tests).
Operations that do not generate floating-point exceptions do not clear this byte. An exception handler can
use this byte to determine which floating-point exception or exceptions caused a trap. The equations below
the table show the comparative relationship between the EXC byte and AEXC byte.

The accrued exception byte contains 5 required bits for IEEE-754 exception-disabled operations. These
exceptions are logical combinations of EXC bits. AEXC records all floating-point exceptions since AEXC
was last cleared, either by writing to FPSR or as a result of reset or a restore operation of the null state.

Many users disable traps for some or all floating-point exception classes. AEXC eliminates the need to
poll EXC after each floating-point instruction. At the end of arithmetic operations, EXC bits are logically
combined to form an AEXC value that is logically ORed into the existing AEXC byte (FBcc only updates
IOP). This operation creates sticky floating-point exception bits in AEXC that the user can poll only at the
end of a series of floating-point operations. A sticky bit is one that remains set until the user clears it.

Setting or clearing AEXC bits neither causes nor prevents an exception. The equations below the table
show relationships between EXC and AEXC. Comparing the current value of an AEXC bit with a
combination of EXC bits derives a new value in the corresponding AEXC bit. These boolean equations
apply to setting AEXC bits at the end of each operation affecting AEXC.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Floating-Point Condition Code Byte (FPCC)
Rl O 0 0 0 N z I [NAN| O 0 0 0 0 0oj0]| O
\W
Reset| 0 0 0 0 0 0 © 0 0 0 0 0 0 0O 0 ©
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Exception Status Byte (EXC) Floating-Point Accrued Exception Byte (AEXC)

R|BSUN | INAN |OPERR |OVFL |UNFL| DZ |INEX| IDE | IOP |OVFL |UNFL| DZ |INEX| O 0 0

w
Reset| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Reg CPU + 0x822
Addr

Figure 6-10. Floating-Point Status Register (FPSR)

Table 6-5 describes FPSR fields.

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor 6-9

Table 6-5. FPSR Field Descriptions

Bits Field Description
31-28 — Reserved, should be cleared.
27 N Negative
26 4 Zero
25 I Infinity
24 NAN Not-a-number
23-16 — Reserved, should be cleared.
15 BSUN Branch/set on unordered
14 INAN Input not-a-number
13 OPERR | Operand error
12 OVFL Overflow
11 UNFL Underflow
10 Dz Divide by zero
9 INEX Inexact result
8 IDE Input is denormalized
7 IOP Invalid operation
6 OVFL Overflow
5 UNFL Underflow
4 Dz Divide by zero
3 INEX Inexact result
2-0 — Reserved, should be cleared.

For AEXC[OVFL], AEXC[DZ], and AEXC[INEX], the next value is determined by ORing the current
AEXC value with the EXC equivalent, as shown in the following:

* Next AEXC[OVFL] = Current AEXC[OVFL] | EXC[OVFL]

* Next AEXC[DZ] = Current AEXC[DZ] | EXC[DZ]

* Next AEXC[INEX] = Current AEXC[INEX] | EXC[INEX]

For AEXC[IOP] and AEXC[UNFL], the next value is calculated by ORing the current AEXC value with
EXC bit combinations, as follows:

* Next AEXC[IOP] = Current AEXC[IOP] | EXC[BSUN | INAN | OPERR]
* Next AEXC[UNFL] = Current AEXC[UNFL] | EXC[UNFL & INEX]
6.3.4 Floating-Point Instruction Address Register (FPIAR)
The ColdFire OEP can execute integer and floating-point instructions simultaneously. As a result, the PC

value stacked by the processor in response to a floating-point exception trap may not point to the
instruction that caused the exception.

MCF547x Reference Manual, Rev. 5

6-10 Freescale Semiconductor

Floating-Point Computational Accuracy

For FPU instructions that can generate exception traps, the 32-bit FPIAR is loaded with the instruction PC
address before the FPU begins execution. In case of an FPU exception, the trap handler can use the FPIAR
contents to determine the instruction that generated the exception. FMOVE to/from FPCR, FPSR, or
FPIAR and FMOVEM instructions cannot generate floating-point exceptions; therefore, they do not
modify FPIAR. A reset or a null-restore operation clears FPIAR.

6.4 Floating-Point Computational Accuracy

The FPU performs all floating-point internal operations in double-precision. It supports mixed-mode
arithmetic by converting single-precision operands to double-precision values before performing the
specified operation. The FPU converts all memory data formats to the double-precision data format and
stores the value in a floating-point register or uses it as the source operand for an arithmetic operation.
When moving a double-precision floating-point value from a floating-point data register, the FPU can
convert the data depending on the destination, as follows:

» \alid data formats for memory destination: B, W, L, S, or D
» \Valid data formats for integer data register destinations: B, W, L, or S

Normally if the input operand is a denormalized number, the number must be normalized before an FPU
instruction can be executed. A denormalized input operand is converted to zero if the input denorm
exception (IDE) is disabled. If IDE is enabled, the floating-point engine traps to allow software action to
be taken by the handler.

6.4.1 Intermediate Result

All FPU calculations use an intermediate result. When the FPU performs any operation, the calculation is
carried out using double-precision inputs, and the intermediate result is calculated as if to produce infinite
precision. After the calculation is complete, any necessary rounding of the intermediate result for the
selected precision is performed and the result is stored in the destination.

Figure 6-11 shows the intermediate result format. The intermediate result’s exponent for some dyadic
operations (for example, multiply and divide) can easily overflow or underflow the 11-bit exponent of the
designated floating-point register. To simplify overflow and underflow detection, intermediate results in
the FPU maintain a 12-bit two’s complement, integer exponent. Detection of an intermediate result
overflow or underflow always converts the 12-bit exponent into a 11-bit biased exponent before being
stored in a floating-point data register. The FPU internally maintains a 56-bit mantissa for rounding
purposes. The mantissa is always rounded to 53 bits (or fewer, depending on the selected rounding
precision) before it is stored in a floating-point data register.

56-Bit Intermediate Mantissa
I 1

| 12-Bit Exponent | | 52-Bit Fraction | | | ’|j

Integer Isb

Guard
Round
Sticky
Figure 6-11. Intermediate Result Format

If the destination is a floating-point data register, the result is in double-precision format but may be
rounded to single-precision, if required by the rounding precision, before being stored. If the
single-precision mode is selected, the exponent value is in the correct range even if it is stored in

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor 6-11

double-precision format. If the destination is a memory location or an integer data register, rounding
precision is ignored. In this case, a number in the double-precision format is taken from the source
floating-point data register, rounded to the destination format precision, and then written to memory or the
integer data register.

Depending on the selected rounding mode or destination data format, the location of the Isb of the mantissa
and the locations of the guard, round, and sticky bits in the 56-bit intermediate result mantissa vary. Guard
and round bits are calculated exactly. The sticky bit creates the illusion of an infinitely wide intermediate
result. As the arrow in Figure 6-11 shows, the sticky bit is the logical OR of all bits to the right of the round
bit in the infinitely precise result. During calculation, nonzero bits generated to the right of the round bit
set the sticky bit. Because of the sticky bit, the rounded intermediate result for all required IEEE arithmetic
operations in RN mode can err by no more than one half unit in the last place.

6.4.2 Rounding the Result

The FPU supports the four rounding modes specified by the IEEE-754 standard: round-to-nearest (RN),
round-toward-zero (RZ), round-toward-plus-infinity (RP), and round-toward-minus-infinity (RM). The
RM and RP modes are often referred to as directed-rounding-modes and are useful in interval arithmetic.
Rounding is accomplished through the intermediate result. Single-precision results are rounded to a 24-bit
mantissa boundary; double-precision results are rounded to a 53-bit mantissa boundary.

The current floating-point instruction can specify rounding precision, overriding the rounding precision
specified in FPCR for the duration of the current instruction. For example, the rounding precision for
FADD is determined by FPCR, while the rounding precision for FSADD is single-precision, independent
of FPCR.

Range control helps emulate devices that support only single-precision arithmetic by rounding the
intermediate result’s mantissa to the specified precision and checking that the intermediate exponent is in
the representable range of the selected rounding precision. If the intermediate result’s exponent exceeds
the range, the appropriate underflow or overflow value is stored as the result in the double-precision format
exponent. For example, if the data format and rounding mode is single-precision RM and the result of an
arithmetic operation overflows the single-precision format, the maximum normalized single-precision
value is stored as a double-precision number in the destination floating-point data register; that is, the
unbiased 11-bit exponent is OXOFF and the 52-bit fraction is OxF_FFFF_E000_0000. If an infinity is the
appropriate result for an underflow or overflow, the infinity value for the destination data format is stored
as the result; that is, the exponent has the maximum value and the mantissa is zero.

Figure 6-12 shows the algorithm for rounding an intermediate result to the selected rounding precision and
destination data format. If the destination is a floating-point register, the rounding boundary is determined
by either the selected rounding precision specified by FPCR[PREC] or by the instruction itself. For
example, FSADD and FDADD specify single- and double-precision rounding regardless of FPCR[PREC].
If the destination is memory or an integer data register, the destination data format determines the rounding
boundary. If the rounded result of an operation is inexact, INEX is set in FPSR[EXC].

MCF547x Reference Manual, Rev. 5

6-12 Freescale Semiconductor

Floating-Point Computational Accuracy

Guard, Round
and Sticky Bits =0

INEX w1

Select Rounding Mode

Check Intermediate Result l

N
RN RM RP Rz
Pos Neg Pos Neg

GandlIsb =1, G, R, G, R,
RandS=0 orS=1 orS=1
or
E Resul
) xact Result
RorS=1 G,R,and S
| are chopped
Add 1 to Isb
Add 1 to
Isb

Overflow = 1
Shift mantissa
right 1 bit, Cf
Add 1 to exponent
Guard>»0
Round» 0
Sticky >0

(Exit) (Exit)

Figure 6-12. Rounding Algorithm Flowchart

The 3 additional bits beyond the double-precision format, the difference between the intermediate result’s
56-bit mantissa and the storing result’s 53-bit mantissa, allow the FPU to perform all calculations as
though it were performing calculations using a compute engine with infinite bit precision. The result is
always correct for the specified destination’s data format before rounding (unless an overflow or
underflow error occurs). The specified rounding produces a number as close as possible to the infinitely
precise intermediate value and still representable in the selected precision. The tie case in Table 6-6 shows
how the 56-bit mantissa allows the FPU to meet the error bound of the IEEE specification.

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor 6-13

Table 6-6. Tie-Case Example

Result Integer 52-Bit Fraction Guard Round Sticky
Intermediate X XXX...X00 1 0 0
Rounded-to-Nearest X XXX...X00 0 0 0

The Isb of the rounded result does not increment even though the guard bit is set in the intermediate result.
The IEEE-754 standard specifies this way of handling ties. If the destination data format is
double-precision and there is a difference between the infinitely precise intermediate result and the
round-to-nearest result, the relative difference is 27°2 (the value of the guard bit). This error is equal to half
of the Isb’s value and is the worst case error that can be introduced with RN mode. Thus, the term one-half
unit in the last place correctly identifies the error bound for this operation. This error_specification is the
relative error present in the result; the absolute error bound is equal to 2PoNent x 2-53 Taple 6-7 shows
the error bound for other rounding modes.

Table 6-7. Round Mode Error Bounds

Result Integer 52-Bit Fraction Guard Round Sticky
Intermediate X XXX...X00 1 1 1
Rounded-to-Zero X XXX...X00 0 0 0

The difference between the infinitely precise result and the rounded result is 273 + 2754 + 275 which is
slightly less than 2722 (the value of the Isb). Thus, the error bound for this operation is not more than one
unit in the last place. The FPU meets these error bounds for all arithmetic operations, providing accurate,
repeatable results.

6.5 Floating-Point Post-Processing

Most operations end with post-processing, for which the FPU provides two steps. First, FPSR[FPCC] bits
are set or cleared at the end of each arithmetic or move operation to a single floating-point data register.
FPCC bits are consistently set based on the result of the operation. Second, the FPU supports 32
conditional tests that allow floating-point conditional instructions to test floating-point conditions in the
same way that integer conditional instructions test the integer condition code. The combination of
consistently set FPCC bits and the simple programming of conditional instructions gives the processor a
highly flexible, efficient way to change program flow based on floating-point results. When the summary
for each instruction is read, it should be assumed that an instruction performs post processing, unless the
summary specifically states otherwise. The following paragraphs describe post processing in detail.

6.5.1 Underflow, Round, and Overflow

During calculation of an arithmetic result, the FPU has more precision and range than the 64-bit
double-precision format. However, the final result is a double-precision value. In some cases, an
intermediate result becomes either smaller or larger than can be represented in double-precision. Also, the
operation can generate a larger exponent or more bits of precision than can be represented in the chosen
rounding precision. For these reasons, every arithmetic instruction ends by checking for underflow,
rounding the result and checking for overflow.

At the completion of an arithmetic operation, the intermediate result is checked to see if it is too small to
be represented as a normalized number in the selected precision. If so, the underflow (UNFL) bit is set in
FPSR[EXC]. If no underflow occurs, the intermediate result is rounded according to the user-selected

MCF547x Reference Manual, Rev. 5

6-14 Freescale Semiconductor

Floating-PointPost-Processing

rounding precision and mode. After rounding, the inexact bit (INEX) is set as described in Figure 6-12.
Lastly, the magnitude of the result is checked to see if it exceeds the current rounding precision. If so, the
overflow (OVFL) bit is set, and a correctly signed infinity or correctly signed largest normalized number
is returned, depending on the rounding mode.

NOTE

INEX can also be set by OVFL, UNFL, and when denormalized numbers
are encountered.

6.5.2 Conditional Testing

Unlike operation-dependent integer condition codes, an instruction either always sets FPCC bits in the
same way or does not change them at all. Therefore, instruction descriptions do not include FPCC settings.
This section describes how FPCC bits are set.

FPCC bits differ slightly from integer condition codes. An FPU operation’s final result sets or clears FPCC
bits accordingly, independent of the operation itself. Integer condition code bits N and Z have this
characteristic, but V and C are set differently for different instructions. Table 6-8 lists FPCC settings for
each data type. Loading FPCC with another combination and executing a conditional instruction can
produce an unexpected branch condition.

Table 6-8. FPCC Encodings

Data Type N Z I NAN
+ Normalized or Denormalized 0 0 0 0
— Normalized or Denormalized 1 0 0 0
+0 0 1 0 0
-0 1 1 0 0
+ Infinity 0 0 1 0
— Infinity 1 0 1 0
+ NAN 0 0 0 1
— NAN 1 0 0 1

The inclusion of the NAN data type in the IEEE floating-point number system requires each conditional
test to include FPCC[NAN] in its boolean equation. Because it cannot be determined whether a NAN is
bigger or smaller than an in-range number (since it is unordered), the compare instruction sets
FPCC[NAN] when an unordered compare is attempted. All arithmetic instructions that result in a NAN
also set the NAN bit. Conditional instructions interpret NAN being set as the unordered condition.

The IEEE-754 standard defines the following four conditions:
* Equal to (EQ)
» Greater than (GT)
e Lessthan (LT)
* Unordered (UN)

The standard requires only the generation of the condition codes as a result of a floating-point compare
operation. The FPU can test for these conditions and 28 others at the end of any operation affecting
condition codes. For floating-point conditional branch instructions, the processor logically combines the
4 bits of the FPCC condition codes to form 32 conditional tests, 16 of which cause an exception if an

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor 6-15

unordered condition is present when the conditional test is attempted (IEEE nonaware tests). The other 16
do not cause an exception (IEEE-aware tests). The set of IEEE nonaware tests is best used in one of the
following cases:

* When porting a program from a system that does not support the IEEE standard to a conforming
system

* When generating high-level language code that does not support IEEE floating-point concepts (that
is, the unordered condition).

An unordered condition occurs when one or both of the operands in a floating-point compare operation is
a NAN. The inclusion of the unordered condition in floating-point branches destroys the familiar
trichotomy relationship (greater than, equal, less than) that exists for integers. For example, the opposite
of floating-point branch greater than (FBGT) is not floating-point branch less than or equal (FBLE).
Rather, the opposite condition is floating-point branch not greater than (FBNGT). If the result of the
previous instruction was unordered, FBNGT is true, whereas both FBGT and FBLE would be false because
unordered fails both of these tests (and sets BSUN). Compiler code generators should be particularly
careful of the lack of trichotomy in the floating-point branches, because it is common for compilers to
invert the sense of conditions.

When using the IEEE nonaware tests, the user receives a BSUN exception if a branch is attempted and
FPCCI[NAN] is set, unless the branch is an FBEQ or an FBNE. If the BSUN exception is enabled in FPCR,
the exception takes a BSUN trap. Therefore, the IEEE nonaware program is interrupted if an unexpected
condition occurs. Users knowledgeable of the IEEE-754 standard should use IEEE-aware tests in
programs that contain ordered and unordered conditions. Because the ordered or unordered attribute is
explicitly included in the conditional test, EXC[BSUN] is not set when the unordered condition occurs.
Table 6-9 summarizes conditional mnemonics, definitions, equations, predicates, and whether
EXC[BSUN] is set for the 32 floating-point conditional tests. The equation column lists FPCC bit
combinations for each test in the form of an equation. Condition codes with an overbar indicate cleared
bits; all other bits are set.

Table 6-9. Floating-Point Conditional Tests

Mnemonic Definition Equation Predicate 1 EXC[BSUN] Set
IEEE Nonaware Tests
EQ Equal z 000001 No
NE Not equal z 001110 No
GT Greater than NAN|Z|N 010010 Yes
NGT Not greater than NAN | Z|N 011101 Yes
GE Greater than or equal Z| (NANTN) 010011 Yes
NGE Not greater than or equal NAN | (N & Z) 011100 Yes
LT Less than N & (NAN | 2) 010100 Yes
NLT Not less than NAN | (Z | N) 011011 Yes
LE Less than or equal Z | (N & NAN) 010101 Yes
NLE Not less than or equal NAN | (N2) 011010 Yes
GL Greater or less than NAN | Z 010110 Yes
NGL Not greater or less than NAN | Z 011001 Yes
GLE Greater, less or equal NAN 010111 Yes

MCF547x Reference Manual, Rev. 5

6-16 Freescale Semiconductor

g |

Floating-PointExceptions

Table 6-9. Floating-Point Conditional Tests (Continued)

Mnemonic Definition Equation Predicate ! EXC[BSUN] Set

NGLE Not greater, less or equal NAN 011000 Yes

IEEE-Aware Tests

EQ Equal z 000001 No
NE Not equal z 001110 No
OGT Ordered greater than NAN|Z|N 000010 No
ULE Unordered or less or equal NAN|Z|N 001101 No
OGE Ordered greater than or equal | Z | (NAN | N) 000011 No
ULT Unordered or less than NAN | (N & Z) 001100 No
OoLT Ordered less than N & (NAN | 2) 000100 No
UGE Unordered or greater or equal NAN | (Z | N) 001011 No
OLE Ordered less than or equal Z | (N & NAN) 000101 No
UGT Unordered or greater than NAN | (N|2) 001010 No
OGL Ordered greater or less than NAN|Z 000110 No
UEQ Unordered or equal NAN | Z 001001 No
OR Ordered NAN 000111 No
UN Unordered NAN 001000 No

Miscellaneous Tests

F False False 000000 No
T True True 001111 No
SF Signaling false False 010000 Yes
ST Signaling true True 011111 Yes
SEQ Signaling equal z 010001 Yes
SNE Signaling not equal d 011110 Yes

1 This column refers to the value in the instruction’s conditional predicate field that specifies this test.

6.6 Floating-Point Exceptions

This section describes floating-point exceptions and how they are handled. Table 6-10 lists the vector
numbers related to floating-point exceptions. If the exception is taken pre-instruction, the PC contains the
address of the next floating-point instruction (nextFP). If the exception is taken post-instruction, the PC
contains the address of the faulting instruction (fault).

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor 6-17

Table 6-10. Floating-Point Exception Vectors

Vector Number | Vector Offset | Program Counter Assignment
48 0x0CO0 Fault Floating-point branch/set on unordered condition
49 0x0C4 NextFP or Fault | Floating-point inexact result
50 0x0C8 NextFP Floating-point divide-by-zero
51 0x0CC NextFP or Fault | Floating-point underflow
52 0x0DO0 NextFP or Fault | Floating-point operand error
53 0x0D4 NextFP or Fault | Floating-point overflow
54 0x0D8 NextFP or Fault | Floating-point input NAN
55 0x0DC NextFP or Fault | Floating-point input denormalized number

In addition to these vectors, attempting to execute a FRESTORE instruction with a unsupported frame
value generates a format error exception (vector 14). See the FRESTORE instruction in the ColdFire
Programmer’s Reference Manual.

Attempting to execute an FPU instruction with an undefined or unsupported value in the 6-bit effective
address, the 3-bit source/destination specifier, or the 7-bit opmode generates a line-F emulator exception,
vector 11. See Table 6-23.

6.6.1 Floating-Point Arithmetic Exceptions

This section describes floating-point arithmetic exceptions; Table 6-11 lists these exceptions in order of
priority:
Table 6-11. Exception Priorities

Priority Exception

Branch/set on unordered (BSUN)

Input Not-a-Number (INAN)

Input denormalized number (IDE)

Operand error (OPERR)

Overflow (OVFL)

Underflow (UNFL)

Divide-by-zero (DZ)

|l N|lO|l O b W] N| P

Inexact (INEX)

Most floating-point exceptions are taken when the next floating-point arithmetic instruction is encountered
(this is called a pre-instruction exception). Exceptions set during a floating-point store to memory or to an
integer register are taken immediately (post-instruction exception).

Note that FMOVE is considered an arithmetic instruction because the result is rounded. Only FMOVE
with any destination other than a floating-point register (sometimes called FMOVE OUT) can generate
post-instruction exceptions. Post-instruction exceptions never write the destination. After a
post-instruction exception, processing continues with the next instruction.

MCF547x Reference Manual, Rev. 5

6-18 Freescale Semiconductor

Floating-PointExceptions

A floating-point arithmetic exception becomes pending when the result of a floating-point instruction sets
an FPSR[EXC] bit and the corresponding FPCR[ENABLE] bit is set. A user write to the FPSR or FPCR
that causes the setting of an exception bit in FPSR[EXC] along with its corresponding exception enabled
in FPCR, leaves the FPU in an exception-pending state. The corresponding exception is taken at the start
of the next arithmetic instruction as a pre-instruction exception.

Executing a single instruction can generate multiple exceptions. When multiple exceptions occur with
exceptions enabled for more than one exception class, the highest priority exception is reported and taken.
It is up to the exception handler to check for multiple exceptions. The following multiple exceptions are
possible:

* Operand error (OPERR) and inexact result (INEX)

* Overflow (OVFL) and inexact result (INEX)

* Underflow (UNFL) and inexact result (INEX)

» Divide-by-zero (DZ) and inexact result (INEX)

* Input denormalized number (IDE) and inexact result (INEX)

* Input not-a-number (INAN) and input denormalized number (IDE)

In general, all exceptions behave similarly. If the exception is disabled when the exception condition
exists, no exception is taken, a default result is written to the destination (except for BSUN exception,
which has no destination), and execution proceeds normally.

If an enabled exception occurs, the same default result above is written for pre-instruction exceptions but
no result is written for post-instruction exceptions.

An exception handler is expected to execute FSAVE as its first floating-point instruction. This also clears
FPCR, which keeps exceptions from occurring during the handler. Because the destination is overwritten
for floating-point register destinations, the original floating-point destination register value is available for
the handler on the FSAVE state frame. The address of the instruction that caused the exception is available
in the FPIAR. When the handler is done, it should clear the appropriate FPSR exception bit on the FSAVE
state frame, then execute FRESTORE. If the exception status bit is not cleared on the state frame, the same
exception occurs again.

Alternatively, instead of executing FSAVE, an exception handler could simply clear appropriate FPSR
exception bits, optionally alter FPCR, and then return from the exception. Note that exceptions are never
taken on FMOVE to or from the status and control registers and FMOVEM to or from the floating-point
data registers.

At the completion of the exception handler, the RTE instruction must be executed to return to normal
instruction flow.

6.6.1.1 Branch/Set on Unordered (BSUN)

A BSUN results from performing an IEEE nonaware conditional test associated with the FBcc instruction
when an unordered condition is present. Any pending floating-point exception is first handled by a
pre-instruction exception, after which the conditional instruction restarts. The conditional predicate is
evaluated and checked for a BSUN exception before executing the conditional instruction. A BSUN
exception occurs if the conditional predicate is an IEEE non-aware branch and FPCC[NAN] is set. When
this condition is detected, FPSR[BSUN] is set.

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor 6-19

Table 6-12. BSUN Exception Enabled/Disabled Results

Condition BSUN Description

Exception 0 The floating-point condition is evaluated as if it were the equivalent IEEE-aware conditional
disabled predicate. No exceptions are taken.

Exception 1 The processor takes a floating-point pre-instruction exception.
Enabled The BSUN exception is unigue in that the exception is taken before the conditional

predicate is evaluated. If the user BSUN exception handler fails to update the PC to the

instruction after the excepting instruction when returning, the exception executes again.

Any of the following actions prevent taking the exception again:

e Clearing FPSR[NAN]

« Disabling FPCR[BSUN]

* Incrementing the stored PC in the stack bypasses the conditional instruction. This
applies to situations where fall-through is desired. Note that to accurately calculate the
PC increment requires knowledge of the size of the bypassed conditional instruction.

6.6.1.2 Input Not-A-Number (INAN)

The INAN exception is a mechanism for handling a user-defined, non-1EEE data type. If either input
operand isa NAN, FPSR[INAN] is set. By enabling this exception, the user can override the default action
taken for NAN operands. Because FMOVEM, FMOVE FPCR, and FSAVE instructions do not modify
status bits, they cannot generate exceptions. Therefore, these instructions are useful for manipulating
INANSs. See Table 6-13.

Table 6-13. INAN Exception Enabled/Disabled Results

Condition INAN Description
Exception 0 If the destination data format is single- or double-precision, a NAN is generated with a
disabled mantissa of all ones and a sign of zero transferred to the destination. If the destination data
format is B, W, or L, a constant of all ones is written to the destination.
Exception 1 The result written to the destination is the same as the exception disabled case unless the
enabled exception occurs on a FMOVE OUT, in which case the destination is unaffected.

6.6.1.3 Input Denormalized Number (IDE)

The input denorm bit, FPCR[IDE], provides software support for denormalized operands. When the IDE
exception is disabled, the operand is treated as zero, FPSR[INEX] is set, and the operation proceeds. When
the IDE exception is enabled and an operand is denormalized, an IDE exception is taken, but FPSR[INEX]
is not set to allow the handler to set it appropriately. See Table 6-14.

Note that the FPU never generates denormalized numbers. If necessary, software can create them in the
underflow exception handler.

Table 6-14. IDE Exception Enabled/Disabled Results

Condition IDE Description
Exception 0 Any denormalized operand is treated as zero, FPSR[INEX] is set, and the operation
disabled proceeds.
Exception 1 The result written to the destination is the same as the exception disabled case unless the
enabled exception occurs on a FMOVE OUT, in which case the destination is unaffected.
FPSR[INEX] is not set to allow the handler to set it appropriately.

MCF547x Reference Manual, Rev. 5

6-20 Freescale Semiconductor

Floating-PointExceptions

6.6.1.4 Operand Error (OPERR)

The operand error exception encompasses problems arising in a variety of operations, including errors too
infrequent or trivial to merit a specific exception condition. Basically, an operand error occurs when an
operation has no mathematical interpretation for the given operands. Table 6-15 lists possible operand
errors. When one occurs, FPSR[OPERR] is set.

Table 6-15. Possible Operand Errors

Instruction Condition Causing Operand Error

FADD [(+o0) + (-e0)] Or [(-0) + (+0)]

FDIV (0+0)or (w0 +)

FMOVE OUT (to B, W, or L) | Integer overflow, source is NAN or oo

FMUL One operand is 0 and the other is +oo
FSQRT Source is < 0 or -
FSUB [(+0) - (+o0)] or [(-00) - (-0)]

Table 6-16 describes results when the exception is enabled and disabled.
Table 6-16. OPERR Exception Enabled/Disabled Results

Condition | OPERR Description
Exception 0 When the destination is a floating-point data register, the result is a double-precision NAN, with
disabled its mantissa set to all ones and the sign set to zero (positive).

For a FMOVE OUT instruction with the format S or D, an OPERR exception is impossible. With
the format B, W, or L, an OPERR exception is possible only on a conversion to integer overflow,
or if the source is either an infinity or a NAN. On integer overflow and infinity source cases, the
largest positive or negative integer that can fit in the specified destination size (B, W, or L) is
stored. In the NAN source case, a constant of all ones is written to the destination.

Exception 1 The result written to the destination is the same as for the exception disabled case unless the
enabled exception occurred on a FMOVE OUT, in which case the destination is unaffected. If desired,
the user OPERR handler can overwrite the default result.

6.6.1.5 Overflow (OVFL)

An overflow exception is detected for arithmetic operations in which the destination is a floating-point
data register or memory when the intermediate result’s exponent is greater than or equal to the maximum
exponent value of the selected rounding precision. Overflow occurs only when the destination is S- or
D-precision format; overflows for other formats are handled as operand errors. At the end of any operation
that could potentially overflow, the intermediate result is checked for underflow, rounded, and then
checked for overflow before it is stored to the destination. If overflow occurs, FPSR[OVFL,INEX] are set.

Even if the intermediate result is small enough to be represented as a double-precision number, an
overflow can occur if the magnitude of the intermediate result exceeds the range of the selected rounding
precision format. See Table 6-17.

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor 6-21

Table 6-17. OVFL Exception Enabled/Disabled Results

Condition OVFL Description
Exception 0 The values stored in the destination based on the rounding mode defined in FPCR[MODE].
disabled RN Infinity, with the sign of the intermediate result.

RZ Largest magnitude number, with the sign of the intermediate result.
RM For positive overflow, largest positive normalized number

For negative overflow, -c.
RP For positive overflow, +o

For negative overflow, largest negative normalized number.

Exception 1 The result written to the destination is the same as for the exception disabled case unless
enabled the exception occurred on a FMOVE OUT, in which case the destination is unaffected. If
desired, the user OVFL handler can overwrite the default result.

6.6.1.6 Underflow (UNFL)

An underflow exception occurs when the intermediate result of an arithmetic instruction is too small to be
represented as a normalized number in a floating-point register or memory using the selected rounding
precision; that is, when the intermediate result exponent is less than or equal to the minimum exponent
value of the selected rounding precision. Underflow can only occur when the destination format is single
or double precision. When the destination is byte, word, or longword, the conversion underflows to zero
without causing an underflow or an operand error. At the end of any operation that could underflow, the
intermediate result is checked for underflow, rounded, and checked for overflow before it is stored in the
destination. FPSR[UNFL] is set if underflow occurs. If the underflow exception is disabled, FPSR[INEX]
is also set.

Even if the intermediate result is large enough to be represented as a double-precision number, an
underflow can occur if the magnitude of the intermediate result is too small to be represented in the
selected rounding precision. Table 6-18 shows results when the exception is enabled or disabled.

Table 6-18. UNFL Exception Enabled/Disabled Results

Condition UNFL Description
Exception 0 The stored result is defined below. The UNFL exception also sets FPSR[INEX] if the UNFL
disabled exception is disabled.

RN Zero, with the sign of the intermediate result.
RZ Zero, with the sign of the intermediate result.
RM For positive underflow, + 0
For negative underflow, smallest negative normalized number.
RP For positive underflow, smallest positive normalized number
For negative underflow, - O

Exception 1 The result written to the destination is the same as for the exception disabled case unless

enabled the exception occurs on a FMOVE OUT, in which case the destination is unaffected. If
desired, the user UNFL handler can overwrite the default result. The UNFL exception does
not set FPSR[INEX] if the UNFL exception is enabled so the exception handler can set
FPSR[INEX] based on results it generates.

6.6.1.7 Divide-by-Zero (DZ)
Attempting to use a zero divisor for a divide instruction causes a divide-by-zero exception. When a

divide-by-zero is detected, FPSR[DZ] is set. Table 6-19 shows results when the exception is enabled or
disabled.

MCF547x Reference Manual, Rev. 5

6-22 Freescale Semiconductor

Floating-PointExceptions

Table 6-19. DZ Exception Enabled/Disabled Results

Condition Dz Description

Exception 0 The destination floating-point data register is written with infinity with the sign set to the
disabled exclusive OR of the signs of the input operands.

Exception 1 The destination floating-point data register is written as in the exception is disabled case.
enabled

6.6.1.8 Inexact Result (INEX)

An INEX exception condition exists when the infinitely precise mantissa of a floating-point intermediate
result has more significant bits than can be represented exactly in the selected rounding precision or in the
destination format. If this condition occurs, FPSR[INEX] is set and the infinitely-precise result is rounded
according to Table 6-20.

Table 6-20. Inexact Rounding Mode Values

Mode Result

RN The representable value nearest the infinitely-precise intermediate value is the result. If the two nearest
representable values are equally near, the one whose Isb is 0 (even) is the result. This is sometimes called
round-to-nearest-even.

Rz The result is the value closest to and no greater in magnitude than the infinitely-precise intermediate
result. This is sometimes called chop-mode, because the effect is to clear bits to the right of the rounding
point.

RM The result is the value closest to and no greater than the infinitely-precise intermediate result (possibly -x).

RP The result is the value closest to and no less than the infinitely-precise intermediate result (possibly +x).

FPSR[INEX] is also set for any of the following conditions:
» If aninput operand is a denormalized number and the IDE exception is disabled
» Anoverflowed result
» Anunderflowed result with the underflow exception disabled
Table 6-18 shows results when the exception is enabled or disabled.
Table 6-21. INEX Exception Enabled/Disabled Results

Condition INEX Description

Exception 0 The result is rounded and then written to the destination.

disabled

Exception 1 The result written to the destination is the same as for the exception disabled case unless

enabled the exception occurred on a FMOVE OUT, in which case the destination is unaffected. If
desired, the user INEX handler can overwrite the default result.

6.6.2 Floating-Point State Frames

Floating-point arithmetic exception handlers should have FSAVE as the first floating-point instruction;
otherwise, encountering another floating-point arithmetic instruction will cause the exception to be
reported again. After FSAVE executes, the handler should use FMOVEM to access floating-point data
registers, because it cannot generate further exceptions or change the FPSR.

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor 6-23

Note that if no intervention is needed, instead of FSAVE, the handler can simply clear the appropriate
FPCR and FPSR bits and then return from the exception.

Because the FPCR and FPSR are written in the FSAVE frame, a context switch needs only execute FSAVE
and FMOVEM for data registers. The new process needs to load data registers by using a
FMOVEM/FRESTORE sequence before it can continue.

FSAVE operations always write a 4-longword floating-point state frame that holds a 64-bit exception
operand. Figure 6-13 shows FSAVE frame contents.

31 24 23 19 18 16 15 0
Format word Control Register (FPCR)

Frame Format ‘ 0000_0 | Vector
Exception operand upper 32 bits
Exception operand lower 32 bits

Status register (FPSR)

Figure 6-13. Floating-Point State Frame Contents

Table 6-22 describes format word fields.
Table 6-22. Format Word Field Descriptions

Bits Name Description

31-24 Frame Defines the format of the frame.
format 0x00 Null Frame (NULL)
0x05 Idle Frame (IDLE)
OXE5 Exception Frame (EXCP)

23-19 — Zeros

18-16 Vector Exception vector
000 BSUN
001 INEX

010 Dz

011 UNFL
100 OPERR
101 OVFL

110 INAN

111 IDE

When FSAVE executes, the floating-point frame reflects the FPU state at the time of the FSAVE.
Internally, the FPU can be in the NULL, IDLE, or EXCP states. Upon reset, the FPU is in NULL state, in
which all floating-point registers contain NANs and the FPCR, FPSR, and FPIAR contain zeros. The FPU
remains in NULL state until execution of an implemented floating-point instruction (except FSAVE). At
this point, the FPU transitions from NULL to an IDLE state. A FRESTORE of NULL returns the FPU to
NULL state.

EXCP state is entered as a result of a floating-point exception or an unsupported data type exception. The
vector field identifies exception types associated with the EXCP state. This field and the exception vector
taken are determined directly from the exception control (FPCR) and status (FPSR) bits. An FSAVE
instruction always clears FPCR after saving its state. Thus, after an FSAVE, a handler does not generate
further floating-point exceptions unless the handler re-enables the exceptions. FRESTORE returns FPCR
and FPSR to their previous state before entering the handler, as stored in the state frame. A handler could
alter the state frame to restore the FPU (using FRESTORE) into a different state than that saved by using
FSAVE.

MCF547x Reference Manual, Rev. 5

6-24 Freescale Semiconductor

Instructions

Normally, an exception handler executes FSAVE, processes the exception, clears the exception bit in the
FSAVE state frame status word, and executes FRESTORE. If appropriate exception bits set in the status
word are not cleared, the same exception is taken again. If multiple exception bits are set in the status word,
each should be processed, cleared, and restored by their respective handlers. In this way, all exceptions are
processed in priority order.

If it is not necessary to handle multiple exceptions, the exception model can be simplified (after any
processing) by the handler manually loading FPCR and FPSR and then discarding the state frame before
executing an RTE. Given that state frames are four longwords, it may be quicker to discard the state frame
by incrementing the address pointer (often the system stack pointer, A7) by 16.

The exception operand, contained in longwords two and three of the FSAVE frame, is always the value of
the destination operand before the operation which caused the exception commenced. Thus, for dyadic
register-to-register operations, the exception operand contains the value of the destination register before
it was overwritten by the operation which caused the exception. This operand can be retrieved by an
exception handler that needs both original operands in order to process the exception.

6.7 Instructions

This section includes an instruction set summary, execution times, and differences between ColdFire and
M68000 FPU programming models. For detailed instruction descriptions, see the ColdFire Programmer’s
Reference Manual.

6.7.1 Floating-Point Instruction Overview

ColdFire instructions are 16-, 32-, or 48-bits long. The general definition of a floating-point operation and
effective addressing mode require 32 bits; some addressing modes require another 16-bit extension word.
Table 6-23 shows the minimum size instruction formats. The first word is the opword; the second is
extension word 1.

Table 6-23. Floating-Point Instruction Formats

Mnemonic Instruction Code

FABS 1111001000 ea eareg |0 |r/m| 0| srcspec|destreg opmode
mode

FADD 1111001000 ea eareg |0 |r/m| 0| srcspec|destreg opmode
mode

FBcc 11110010 1|s| condpredicate 16b displacement or MS Word of 32b

4

LS Word of 32b Displacement

FCMP 1111001000 ea eareg |O|r/m|0O|srcspec|destreg|0 1 1 1 0 0 O
mode

FDIV 1111001000 ea eareg |0 |r/m| 0| srcspec|destreg opmode
mode

FINT 1111001000 ea eareg |O|r/m|0|srcspec|destreg|0 O 0O 0 0 0 1
mode

FINTRZ 1111001000 ea eareg |O|r/m|0|srcspec|destreg|0 O 0 0 0 1 1
mode

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor 6-25

Table 6-23. Floating-Point Instruction Formats (Continued)

Mnemonic Instruction Code

FMOVE 1111001000 ea eareg |0 |r/m| 0| srcspec|destreg opmode
mode

1111001000 ea eareg |0 1 |1]|destfmt| srcreg |O O O O O 0 O
mode
1111001000 ea eareg |1| O |d| regsel [0 O O O O OO OOO

mode r

FMOVEM (1 1 1 1 0 0 1000 ea eareg |1 1 |d{1 0 0 0O register list
mode r

FMUL 1111001000 ea eareg |0 |r/m| 0| srcspec|destreg opmode
mode

FNEG 1111001000 ea eareg |0 |r/m| 0| srcspec | destreg opmode
mode

FNOP 1111001010/0000000 0 00D0O0ODO0ODO0DO0ODO0ODO0ODO0ODO0ODODO0ODO

FRESTOR |1 1 1 1 0 0 110 1 ea eareg

E mode

FSAVE 1111001100 ea eareg
mode

FSQRT 1111001000 ea eareg |0 |r/m| 0| srcspec|destreg opmode
mode

FSUB 1111001000 ea eareg |0 |r/m| 0| srcspec|destreg opmode
mode

FTST 1111001000 ea eareg |O|r/m|0O|srcspec|destreg|0 1 1 1 0 1 O
mode

Table 6-24 defines the terminology used in Table 6-23.
Table 6-24. Instruction Format Terminology

Term Definition
Instructions | Instructions appear in memory as sequential, 16-bit values, and are read in the above table
left to right. An instruction can have from 1 to 3 16-bit words. A shaded block indicates this
word is never used and is not present.
EA MODE Defines the effective address for an operand located external to the FPU. For most FPU
EA REG instructions, this field defines the location of an external source operand; for FP store
operations, it specifies the destination location.
R/M If R/M = 0, an FPU data register is one source operand, otherwise the source operand is
specified by the EA {MODE, REG} fields.
SRC SPEC | Defines the format (byte, word, longword, single-, or double-precision) of an external
operand.
DEST REG | Specifies the destination FPU data register.
COND Defines the condition to be evaluated (EQ, NE, and so on) during the execution of the FPU
PREDICATE | conditional branch instruction.

MCF547x Reference Manual, Rev. 5

6-26

Freescale Semiconductor

Instructions

Table 6-24. Instruction Format Terminology (Continued)

Term Definition

OPMODE Defines the exact operation to be performed by the FPU.

Sz Defines the length of the PC-relative displacement for the FPU conditional branch
instruction. If SZ = 0, the displacement is 16 bits, otherwise a 32-bit displacement is used.

dr Specifies direction of the MOVE transfer. As a 0, it moves from memory to the FP; as 1, it
moves from the FP to memory.

REGISTER |Defines FPU data registers to be moved during the execution of the FMOVEM instruction.
LIST

REG SEL Indicates the FPU control register to be moved during execution of an FMOVE control
register instruction.

6.7.2 Floating-Point Instruction Execution Timing
Table 6-25 shows the ColdFire execution times for the floating-point instructions in terms of processor
core clock cycles. Each timing entry is presented as C(r/w).

 C=The number of processor clock cycles including all applicable operand reads and writes plus
all internal core cycles required to complete instruction execution

* r =The number of operand reads
e w = The number of operand writes

NOTE

Timing assumptions are the same as those for the ColdFire ISA. See the
ColdFire Microprocessor Family Programmer’s Reference Manual.

Table 6-25. Floating-Point Instruction Execution Times® 2 3

Effective Address <ea>
Opcode Format
FPn Dn (An) (An)+ -(An) (d16,AN) (d16,PC)
FABS <ea>y,FPx | 1(0/0) | 1(0/0) 1(1/0) 1(1/0) | 1(1/0) 1(1/0) 1(1/0)
FADD <ea>y,FPx | 4(0/0) | 4(0/0) 4(1/0) 4(1/0) | 4(1/0) 4(1/0) 4(1/0)
FBcc <label> — — — — — — 2(0/0) if correct,
9(0/0) if incorrect
FCMP <ea>y,FPx | 4(0/0) | 4(0/0) 4(1/0) 4(1/0) | 4(1/0) 4(1/0) 4(1/0)
FDIV <ea>y,FPx | 23(0/0) | 23(0/0) | 23(1/0) | 23(1/0) | 23(1/0) | 23(1/0) 23(1/0)
FINT <ea>y,FPx | 4(0/0) | 4(0/0) 4(1/0) 4(1/0) | 4(1/0) 4(1/0) 4(1/0)
FINTRZ <ea>y,FPx | 4(0/0) | 4(0/0) 4(1/0) 4(1/0) | 4(1/0) 4(1/0) 4(1/0)
FMOVE <ea>y,FPx | 1(0/0) | 1(0/0) 1(1/0) 1(1/0) | 1(1/0) 1(1/0) 1(1/0)
FPy,<ea>x — 2(0/1) 2(0/1) 2(0/1) | 2(0/1) 2(0/1) —
<ea>y,FP*R — 6(0/0) 6(1/0) 6(1/0) | 6(1/0) 6(1/0) 6(1/0)
FP*R,<ea>x — 1(0/0) 1(0/1) 1(0/1) | 1(0/1) 1(0/1) —

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor 6-27

Table 6-25. Floating-Point Instruction Execution Times® 2 3 (Continued)

Effective Address <ea>
Opcode Format
FPn Dn (An) (An)+ -(An) (dq6,AN) (d416,PC)
FMOVEM 4 | <ea>y#list — — 2n(2n/0) — — 2n(2n/0) 2n(2n/0)
#list,<ea>x — — 1+2n(0/2n) — — 1+2n(0/2n) —
FMUL <ea>y,FPx | 4(0/0) | 4(0/0) 4(1/0) 4(1/0) | 4(1/0) 4(1/0) 4(1/0)
FNEG <ea>y,FPx 1(0/0) | 1(0/0) 1(1/0) 1(2/0) | 1(1/0) 1(1/0) 1(1/0)
FNOP — — — — — — 2(0/0)
FRESTORE <ea>y — — 6(4/0) — — 6(4/0) 6(4/0)
FSAVE <ea>x — — 7(014) — — 7(0/4) —
FSQRT <ea>y,FPx | 56(0/0) | 56(0/0) 56(1/0) 56(1/0) | 56(1/0) 56(1/0) 56(1/0)
FSUB <ea>y,FPx | 4(0/0) | 4(0/0) 4(1/0) 4(1/0) | 4(1/0) 4(1/0) 4(1/0)
FTST <ea>y,FPx 1(0/0) | 1(0/0) 1(1/0) 1(2/0) | 1(1/0) 1(1/0) 1(1/0)

Add 1(1/0) for an external read operand of double-precision format for all instructions except FMOVEM, and 1(0/1)
for FMOVE FPy,<ea>x when the destination is double-precision.

If the external operand is an integer format (byte, word, longword), there is a 4 cycle conversion time which must be
added to the basic execution time.

If any exceptions are enabled, the execution time for FMOVE FPy,<ea>x increases by one cycle. If the BSUN
exception is enabled, the execution time for FBcc increases by one cycle.

For FMOVEM, n refers to the number of registers being moved.

The ColdFire architecture supports concurrent execution of integer and floating-point instructions. The
latencies in this table define the execution time needed by the FPU. After a multi-cycle FPU instruction is
issued, subsequent integer instructions can execute concurrently with the FPU execution. For this
sequence, the floating-point instruction occupies only one OEP cycle.

6.7.3 Key Differences between ColdFire and M68000 FPU Programming

Models

This section is intended for compiler developers and developers porting assembly language routines from
the M68000 family to ColdFire. It highlights major differences between the ColdFire FPU instruction set
architecture (ISA) and the equivalent M68000 family ISA, using the MC68060 as the reference. The
internal FPU datapath width is the most obvious difference. ColdFire uses 64-bit double-precision and the
M68000 family uses 80-bit extended precision. Other differences pertain to supported addressing modes,
both across all FPU instructions as well as specific opcodes. Table 6-26 lists key differences. Because all
ColdFire implementations support instruction sizes of 48 bits or less, M68000 operations requiring larger
instruction lengths cannot be supported.

Table 6-26. Key Programming Model Differences

Feature M68000 ColdFire
Internal datapath width 80 bits 64 bits
Support for fpGEN dg(An,Xi),FPx Yes No

MCF547x Reference Manual, Rev. 5

6-28 Freescale Semiconductor

Instructions

Table 6-26. Key Programming Model Differences (Continued)

Feature M68000 ColdFire
Support for fpGEN xxx.{w,I},FPx Yes No
Support for fpGEN dg(PC,Xi),FPx Yes No
Support for fpGEN #xxx,FPx Yes No
Support for fmovem (Ay)+,#list Yes No
Support for fmovem #list,-(Ax) Yes No
Support for fmovem FP Control Registers Yes No

Some differences affect function activation and return. M68000 subroutines typically began with
FMOVEM #list,-(a7) to save registers on the system stack, with each register occupying three longwords.
In ColdFire, each register occupies two longwords and the stack pointer must be adjusted before the
FMOVEM instruction. A similar sequence generally occurs at the end of the function, preparing to return
control to the calling routine.

The examples in Table 6-27, Table 6-28, and Table 6-29 show a M68000 operation and the equivalent
ColdFire sequence.

Table 6-27. M68000/ColdFire Operation Sequence 1t

M68000 ColdFire Equivalent
fmovem.x #list,-(a7) lea -8*n(a7),a7;allocate stack space
fmovem.d #list,(a7) ;save FPU registers
fmovem.x (a7)+,#list fmovem.d (a7),#list ;restore FPU registers
lea 8*n(a7),a7 ;deallocate stack space

1 nis the number of FP registers to be saved/restored.

If the subroutine includes LINK and UNLK instructions, the stack space needed for FPU register storage
can be factored into these operations and LEA instructions are not required.

The M68000 FPU supports loads and stores of multiple control registers (FPCR, FPSR, and FPIAR) with
one instruction. For ColdFire, only one can be moved at a time.

For instructions that require an unsupported addressing mode, the operand address can be formed with a
LEA instruction immediately before the FPU operation. See Table 6-28.

Table 6-28. M68000/ColdFire Operation Sequence 2

M68000 ColdFire Equivalent

fadd.s label,fp2 lea label,a0;form pointer to data
fadd.s (a0),fp2

fmul.d (d8,a1,d7),fp5 lea (d8,a1,d7),a0;form pointer to data
fmul.d (a0),fp5

fcmp.l (d8,pc,d2),fp3 lea (d8,pc,d2),a0;form pointer to data
fecmp.l (a0),fp3

The M68000 FPU allows floating-point instructions to directly specify immediate values; the ColdFire
FPU does not support these types of immediate constants. It is recommended that floating-point immediate

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor 6-29

values be moved into a table of constants that can be referenced using PC-relative addressing or as an offset
from another address pointer. See Table 6-29.

Table 6-29. M68000/ColdFire Operation Sequence 3

M68000 ColdFire Equivalent

fadd.l #imm1,fp3 fadd.l (imm1_label,pc),fp3

fsub.s #imm2,fp4 fsub.s (imm2_label,pc),fp3

fdiv.d #imm3,fp5 fdiv.d (imm3_label,pc),fp3
align 4
imm1_label:
long imm1 ;integer longword
imm2_label:
long imm2 ;single-precision
imm3_label:
long imm3_upper,
imm3_lower ;double-precision

Finally, ColdFire and the M68000 differ in how exceptions are made pending. In the ColdFire exception
model, asserting both an FPSR exception indicator bit and the corresponding FPCR enable bit makes an
exception pending. Thus, a pending exception state can be created by loading FPSR and/or FPCR. On the
M68000, this type of pending exception is not possible.

Analysis of compiled floating-point applications indicates these differences account for most of the
changes between M68000-compatible text and the equivalent ColdFire program.

MCF547x Reference Manual, Rev. 5

6-30 Freescale Semiconductor

Chapter 7
Local Memory

This chapter describes the MCF547x implementation of the ColdFire Version 4e local memory
specification. It consists of two major sections.

» Section 7.2, “SRAM Overview,” describes the MCF54x7 core’s local static RAM (SRAM)
implementation. It covers general operations, configuration, and initialization. It also provides
information and examples showing how to minimize power consumption when using the SRAM.

» Section 7.7, “Cache Overview,” describes the MCF547x cache implementation, including
organization, configuration, and coherency. It describes cache operations and how the cache
interfaces with other memory structures.

7.1 Interactions between Local Memory Modules

Depending on configuration information, instruction fetches and data read accesses may be sent
simultaneously to the SRAM and cache controllers. This approach is required because all three controllers
are memory-mapped devices, and the hit/miss determination is made concurrently with the read data
access. Power dissipation can be minimized by configuring the RAMBARS to mask unused address spaces
whenever possible.

If the access address is mapped into the region defined by the SRAM (and this region is not masked), the
SRAM provides the data back to the processor, and the cache data is discarded. Accesses from the SRAM
module are never cached. The complete definition of the processor’s local bus priority scheme for read
references is as follows:

if (SRAM “hits™)
SRAM supplies data to the processor
else 1If (data cache “hits”)
data cache supplies data to the processor

else system memory reference to access data

For data write references, the memory mapping into the local memories is resolved before the appropriate
destination memory is accessed. Accordingly, only the targeted local memory is accessed for data write
transfers.

NOTE

The two SRAMs discussed in this chapter is on the processor local bus.
There is a third 32-Kbyte SRAM on the MCF547x device. See Chapter 16,
“32-Kbyte System SRAM,” for more information.

7.2 SRAM Overview

The two 4-Kbyte, on-chip SRAM modules provide the core with pipelined, single-cycle access to memory.
Memory can be independently mapped to any 0-modulo-4K location in the 4-Gbyte address space and
configured to respond to either instruction or data accesses.

The following summarizes features of the MCF547x SRAM implementation:

* Two 4-Kbyte SRAMSs, organized as 1024 x 32 bits
» Single-cycle throughput. When the pipeline is full, one access can occur per clock cycle.

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor 7-1

» Physical location on the processor’s high-speed local bus with a user-programmed connection to
the internal instruction or data bus

* Memory location programmable on any 0-modulo-4K address boundary

» Byte, word, and longword address capabilities

* The RAM base address registers (RAMBARO and RAMBARL1) define the logical base address,
attributes, and access types for the two SRAM modules.

7.3 SRAM Operation

Each SRAM module provides a general-purpose memory block that the ColdFire processor can access
with single-cycle throughput. The location of the memory block can be specified to any 0-module-4K
address boundary in the 4-Gbyte address space by RAMBARN[BA], described in Section 7.4.1, “SRAM
Base Address Registers (RAMBARO/RAMBARL).” The memory is ideal for storing critical code or data
structures or for use as the system stack. Because the SRAM module connects physically to the processor’s
high-speed local bus, it can service processor-initiated accesses or memory-referencing debug module
commands.

The Version 4e ColdFire processor core implements a Harvard memory architecture. Each SRAM module
may be logically connected to either the processor’s internal instruction or data bus. This logical
connection is controlled by a configuration bit in the RAM base address registers (RAMBARO and
RAMBARL).

If an instruction fetch is mapped into the region defined by the SRAM, the SRAM sources the data to the
processor and any cache data is discarded. Likewise, if a data access is mapped into the region defined by
the SRAM, the SRAM services the access and the cache is not affected. Accesses from SRAM modules
are never cached, and debug-initiated references are treated as data accesses.

Note also that the SRAMs cannot be accessed by the on-chip DMAs. The on-chip system configuration
allows concurrent core and DMA execution, where the CPU can reference code or data from the internal
SRAMs or caches while performing a DMA transfer.

Accesses are attempted in the following order:
1. SRAM
2. Cache (if space is defined as cacheable)

3. System SRAM, MBAR space, or external access

7.4 SRAM Register Definition
The SRAM programming model consists of RAMBARO and RAMBARL.

7.4.1 SRAM Base Address Registers (RAMBARO/RAMBAR1)

The SRAM modules are configured through the RAMBARS, shown in Figure 7-1. Each RAMBAR holds
the base address of the SRAM. The MOVEC instruction provides write-only access to this register from
the processor. Each RAMBAR can be read or written from the debug module in a similar manner. All
undefined RAMBAR bits are reserved. These bits are ignored during writes to the RAMBAR and return
zeros when read from the debug module. The valid bits, RAMBARN[V], are cleared at reset, disabling the
SRAM modules. All other bits are unaffected.

NOTE
RAMBARN is read/write by the debug module.

MCF547x Reference Manual, Rev. 5

7-2 Freescale Semiconductor

SRAMRegister Definition

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
R BA
w
Reset| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
R BA 0 0 0 WP D/l 0 Clh|sC|sSb|uC|UuUDb | V
w
Reset| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Reg CPU space + 0xC04 (RAMBARO), 0xC05 (RAMBAR1)
Addr

Figure 7-1. SRAM Base Address Registers (RAMBARnN)

RAMBARN fields are described in detail in Table 7-1.

Table 7-1. RAMBARN Field Description

Bits

Name

Description

31-12

BA

Base address. Defines the SRAM module’s word-aligned base address. Each SRAM
module occupies a 4-Kbyte space defined by the contents of BA. SRAM may reside on any
4-Kbyte boundary in the 4 Gbyte address space.

11-9

Reserved. Should be cleared.

WP

Write protect. Controls read/write properties of the SRAM.

0 Allows read and write accesses to the SRAM module

1 Allows only read accesses to the SRAM module. Any attempted write reference
generates an access error exception to the ColdFire processor core.

D/l

Data/instruction bus. Indicates whether SRAM is connected to the internal data or
instruction bus.

0 Data bus

1 Instruction bus

Reserved, should be cleared.

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor

7-3

Table 7-1. RAMBARN Field Description (Continued)

Bits Name Description

5 (@] Address space masks (ASn). These fields allow certain types of accesses to be masked,
or inhibited from accessing the SRAM module. These bits are useful for power
management as described in Section 7.6, “Power Management.” In particular, C/I is
typically set.

The address space mask bits are follows:

3 sD C/I = CPU spacel/interrupt acknowledge cycle mask. Note that C/I must be set if BA = 0.
SC = Supervisor code address space mask

SD = Supervisor data address space mask

2 uc UC = User code address space mask

UD = User data address space mask

For each ASn bit:

1 ub 0 An access to the SRAM module can occur for this address space
1 Disable this address space from the SRAM module. If a reference using this address
space is made, it is inhibited from accessing the SRAM module and is processed like
any other non-SRAM reference.
0 \Y Valid. Enables/disables the SRAM module. V is cleared at reset.

0 RAMBAR contents are not valid.
1 RAMBAR contents are valid.

The mapping of a given access into the SRAM uses the following algorithm to determine if the access hits
in the memory:

if (RAMBAR[O] = 1)

if (((access = instructionFetch) & (RAMBAR[7] = 1)) |
((access = dataReference) & (RAMBAR[7] = 0)))
if (requested address[31:10] = RAMBAR[31:10])
if (requested address[31:n] = RAMBAR[31:n]
if (ASn of the requested type = 0)
Access is mapped to the SRAM module
if (access = read)
Read the SRAM and return the data
if (access = write)
if (RAMBAR[8] = 0)
Write the data into the SRAM
else Signal a write-protect access error

ASn refers to the five address space mask bits: C/I, SC, SD, UC, and UD.

7.5 SRAM Initialization

After a hardware reset, the contents of each SRAM module are undefined. The valid bits, RAMBARN[V],
are cleared, disabling the SRAM modules. If the SRAM requires initialization with instructions or data,
the following steps should be performed:

1. Load RAMBARN with bit 7 = 0, mapping the SRAM module to the desired location. Clearing
RAMBARN[7] logically connects the SRAM module to the processor’s data bus.

2. Read the source data and write it to the SRAM. Various instructions support this function,
including memory-to-memory move instructions and the move multiple instruction (MOVEM).
MOVEM is optimized to generate line-sized burst fetches on line-aligned addresses, so it
generally provides maximum performance.

MCF547x Reference Manual, Rev. 5

7-4 Freescale Semiconductor

SRAMInitialization

3. After the data is loaded into the SRAM, it may be appropriate to revise the RAMBAR attribute
bits, including the write-protect and address-space mask fields. If the SRAM contains
instructions, RAMBARI[D/I] must be set to logically connect the memory to the processor’s
internal instruction bus.

Remember that the SRAM cannot be accessed by the on-chip DMASs. The on-chip system configuration
allows concurrent core and DMA execution, where the core can execute code out of internal SRAM or
cache during DMA access.

The ColdFire processor or an external emulator using the debug module can perform these initialization
functions.

751 SRAM Initialization Code

The code segment below initializes the SRAM using RAMBARQO. The code sets the base address of the
SRAM at 0x2000 0000 before it initializes the SRAM to zeros.

RAMBASE EQU 0x20000000 ;set this variable to 0x20000000
RAMVALID EQU 0x00000035

move. | #RAMBASE+RAMVALI1D,DO ;load RAMBASE + valid bit into DO
movec. | DO, RAMBARO ;load RAMBARO and enable SRAM

The following loop initializes the entire SRAM to zero:

lea.l RAMBASE , A0 ;load pointer to SRAM
move. | #1024 ,D0 ;load loop counter into DO

SRAM_INIT_LOOP:

clir._1 (AO)+ ;clear 4 bytes of SRAM
subq.1 #1,D0 ;decrement loop counter
bne.b SRAM_INIT_LOOP ;exit If done; else continue looping

The following function copies the number of bytesToMove from the source (*src) to the processor’s local
SRAM at an offset relative to the SRAM base address defined by destinationOffset. The bytesToMove
must be a multiple of 16. For best performance, source and destination SRAM addresses should be
line-aligned (0-modulo-16).

; copyToCpuRam (*src, destinationOffset, bytesToMove)

RAMBASE EQU 0x20000000 ;SRAM base address
RAMFLAGS EQU 0x00000035 ;RAMBAR valid + mask bits
lea.l -12(a7),a7;allocate temporary space

movem.l #0xlc, (a7);store D2/D3/D4 registers

; stack arguments and locations

; +0 saved d2
; +4 saved d3
; +8 saved d4
; +12 returnPc
; +16 pointer to source operand

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor 7-5

; +20 destinationOffset
; t24 bytesToMove

move. | RAMBASE+RAMFLAGS,a0 ;define RAMBARO contents
movec.l al,rambarO;load it

move. | 16(a7),a0;load argument defining *src

lea.l RAMBASE ,al;memory pointer to SRAM base
add. 1 20(a7),al;include destinationOffset

move.l 24(a7),d4;load byte count
asr.1 #4 ,d4 ;divide by 16 to convert to loop count

.align 4 ;force loop on 0-mod-4 address
loop: movem.l (a0),#0xf;read 16 bytes from source

movem.l #0xf,(al);store into SRAM destination

lea.l 16(a0),a0; increment source pointer

lea.l 16(al),al;increment destination pointer

subqg.1 #1,d4 ;decrement loop counter

bne.b loop ;1T done, then exit, else continue

movem.l (a7),#0xl1lc;restore d2/d3/d4 registers
lea.l 12(a7),a7;deallocate temporary space
rts

7.6 Power Management

Because processor memory references may be simultaneously sent to an SRAM module and cache, power
can be minimized by configuring RAMBAR address space masks as precisely as possible. For example,
if an SRAM is mapped to the internal instruction bus and contains instruction data, setting the ASn mask
bits associated with operand references can decrease power dissipation. Similarly, if the SRAM contains
data, setting ASn bits associated with instruction fetches minimizes power.

Table 7-2 shows typical RAMBAR configurations.
Table 7-2. Examples of Typical RAMBAR Settings

Data Contained in SRAM RAMBAR[5-0]
Code only 0x2B
Data only 0x35
Both code and data 0x21

7.7 Cache Overview

This section describes the MCF547x cache implementation, including organization, configuration, and
coherency. It describes cache operations and how the cache interacts with other memory structures.

The MCF547x implements a special branch instruction cache for accelerating branches, enabled by a bit
in the cache access control register (CACR[BEC]). The branch cache is described in Section 3.2.1.1.1,
“Branch Acceleration.”

MCF547x Reference Manual, Rev. 5

7-6 Freescale Semiconductor

CacheOrganization

The MCF54x7 processor’s Harvard memory structure includes a 32-Kbyte data cache and a 32-Kbyte
instruction cache. Both are nonblocking and 4-way set-associative with a 16-byte line. The cache improves
system performance by providing single-cycle access to the instruction and data pipelines. This decouples
processor performance from system memory performance, increasing bus availability for on-chip DMA
or external devices. Figure 7-2 shows the organization and integration of the data cache.

Cache
Control External
| Control Bus
P Control Logic —
¢ Control
' ‘ Data Array :|I>
. System
pcgg(l;dezlsrgr Integration Address/
. Unit
Core Directory Array (SIU) Data

Data Data
Data Path
o - Address

ML Address Path

Figure 7-2. Data Cache Organization

Both caches implement line-fill buffers to optimize line-sized burst accesses. The data cache supports
operation of copyback, write-through, or cache-inhibited modes. A four-entry, 32-bit buffer supports cache
line-push operations, and can be configured to defer write buffering in write-through or cache-inhibited
modes. The cache lock feature can be used to guarantee deterministic response for critical code or data
areas.

A nonblocking cache services read hits or write hits from the processor while a fill (caused by a cache
allocation) is in progress. As Figure 7-2 shows, accesses use a single bus connected to the cache.

All addresses from the processor to the cache are physical addresses. A cache hit occurs when an address
matches a cache entry. For a read, the cache supplies data to the processor. For a write, which is permitted
only to the data cache, the processor updates the cache. If an access does not match a cache entry (misses
the cache) or if a write access must be written through to memory, the cache performs a bus cycle on the
internal bus and correspondingly on the external bus by way of the system integration unit (SI1U).

The cache module does not implement bus snooping; cache coherency with other possible bus masters
must be maintained in software.

7.8 Cache Organization

A four-way set associative cache is organized as four ways (levels). There are 512 sets in the 32-Kbyte
data cache with each line containing 16 bytes (4 longwords). The 32-Kbyte instruction cache has 512 sets.
Entire cache lines are loaded from memory by burst-mode accesses that cache 4 longwords of data or
instructions. All 4 longwords must be loaded for the cache line to be valid.

Figure 7-3 shows data cache organization as well as terminology used.

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor 7-7

Way 0 Way 1 Way 2 Way 3

Set 0
Set 1

Set 510 e Line
Set 511 - g

.- Cache Line Format .l -
TAG |[VIM] Longword0 | Longwordl | Longword2 | Longword3 |

Where:

TAG—21-bitaddresstag

V—Valid bitfor line

M—Modified bitfor line (data cache only)

Figure 7-3. Data Cache Organization and Line Format

A setis a group of four lines (one from each level, or way), corresponding to the same index into the cache
array.

7.8.1 Cache Line States: Invalid, Valid-Unmodified, and Valid-Modified

As shown in Table 7-3, a data cache line can be invalid, valid-unmodified (often called exclusive), or
valid-modified. An instruction cache line can be valid or invalid.

Table 7-3. Valid and Modified Bit Settings

\% M Description

0 X Invalid. Invalid lines are ignored during lookups.

1 0 Valid, unmodified. Cache line has valid data that matches system memory.

1 1 Valid, modified. Cache line contains most recent data, data at system memory location is
stale.

A valid line can be explicitly invalidated by executing a CPUSHL instruction.

7.8.2 The Cache at Start-Up

As Figure 7-4 (A) shows, after power-up, cache contents are undefined; VV and M may be set on some lines
even though the cache may not contain the appropriate data for start up. Because reset and power-up do
not invalidate cache lines automatically, the cache should be cleared explicitly by setting
CACR[DCINVA,ICINVA] before the cache is enabled (B).

After the entire cache is flushed, cacheable entries are loaded first in way 0. If way 0 is occupied, the
cacheable entry is loaded into the same set in way 1, as shown in Figure 7-4 (D). This process is described
in detail in Section 7.9, “Cache Operation.”

MCF547x Reference Manual, Rev. 5

7-8 Freescale Semiconductor

— Invalid (V =0)

mmm Valid, not modified (V =1, M =0)
=== Valid, modified (V =1, M =1)

A: Cache population at
start-up
Way OWay 1Way 2Way 3

" -

B: Cache after invalidation, C: Cache after loads in
before it is enabled Way 0
Way OWay 1Way 2Way 3 ~ Way OWay 1Way 2Way 3

CacheOrganization

D: First load in Way 1

Way OWay 1Way 2Way 3

Set 511

At reset, cache contents
are indeterminate; V and
M may be set. The cache
should be cleared
explicitly by setting
CACR[DCINVA] before
the cache is enabled.

Setting CACR[DCINVA] Initial cacheable
invalidates the entire accesses to memory-fill
cache. positions in way O.

Alineisloadedinway 1
only if that set is full in
way 0.

Figure 7-4. Data Cache—A: at Reset, B: after Invalidation, C and D: Loading Pattern

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor

7.9 Cache Operation

Figure 7-5 shows the general flow of a caching operation using the 32-Kbyte data cache as an example.
The discussion in this chapter assumes a data cache. Instruction cache operations are similar except that
there is no support for writing to the cache; therefore, such notions of modified cache lines and write
allocation do not apply.

Address
\ ‘ 1
31 13 12 430
Way 3
Tag Data/Tag Reference Index Way 2
™ Way 1
‘ Way 0
i d Y
I
I
Set0 TAG |STATUS|LWO|LW1|LW2|LW3
Set Set1
—— Select »
A[12:4] . : : . . : : [—
)
Set511| TAG |STATUS|LWO|LW1|LW2|LW3|—
L] 1 |
\ ﬁ i i Data
Address —— — . MUX
A[31:13] I >
| A
ly 3 Line Select
ly 2 Hit 3
ly (1| — Hit2 i
ol Hit1 .| Logical OR [HIty
Comparator | Hit 0

Figure 7-5. Data Caching Operation

The following steps determine if a data cache line is allocated for a given address:
1. The cache set index, A[12:4], selects one cache set.
2. AJ31:13] and the cache set index are used as a tag reference or are used to update the cache line

tag field. Note that A[31:13] can specify 19 possible address lines that can be mapped to one of
the four ways.

3. The four tags from the selected cache set are compared with the tag reference. A cache hit occurs
if a tag matches the tag reference and the V bit is set, indicating that the cache line contains valid
data. If a cacheable write access hits in a valid cache line, the write can occur to the cache line
without having to load it from memory.

If the memory space is copyback, the updated cache line is marked modified (M = 1), because the
new data has made the data in memory out of date. If the memory location is write-through, the

write is passed on to system memory and the M bit is never used. Note that the tag does not have
TT or TM bits.

To allocate a cache entry, the cache set index selects one of the cache’s 512 sets. The cache control logic
looks for an invalid cache line to use for the new entry. If none is available, the cache controller uses a

MCF547x Reference Manual, Rev. 5

7-10 Freescale Semiconductor

CacheOperation

pseudo-round-robin replacement algorithm to choose the line to be deallocated and replaced. First the
cache controller looks for an invalid line, with way 0 the highest priority. If all lines have valid data, a 2-bit
replacement counter is used to choose the way. After a line is allocated, the pointer increments to point to
the next way.

Cache lines from ways 0 and 1 can be protected from deallocation by enabling half-cache locking. If
CACR[DHLCK,IHLCK] = 1, the replacement pointer is restricted to way 2 or 3.

As part of deallocation, a valid, unmodified cache line is invalidated. It is consistent with system memory,
so memory does not need to be updated. To deallocate a modified cache line, data is placed in a push buffer
(for an external cache line push) before being invalidated. After invalidation, the new entry can replace it.
The old cache line may be written after the new line is read.
When a cache line is selected to host a new cache entry, the following three things happen:

1. The new address tag bits A[31:13] are written to the tag.

2. The cache line is updated with the new memory data.

3. The cache line status changes to a valid state (V = 1).

Read cycles that miss in the cache allocate normally as previously described.

Write cycles that miss in the cache do not allocate on a cacheable write-through region, but do allocate for
addresses in a cacheable copyback region.

A copyback byte, word, longword, or line write miss causes the following:
1. The cache initiates a line fill or flush.
2. Space is allocated for a new line.

3. Vand M are both set to indicate valid and modified.
4. Data is written in the allocated space. No write to memory occurs.

Note the following:
* Read hits cannot change the status bits and no deallocation or replacement occurs; the data or
instructions are read from the cache.

» If the cache hits on a write access, data is written to the appropriate portion of the accessed cache
line. Write hits in cacheable, write-through regions generate an external write cycle and the cache
line is marked valid, but is never marked modified. Write hits in cacheable copyback regions do
not perform an external write cycle; the cache line is marked valid and modified (V =1 and M = 1).

» Misaligned accesses are broken into at least two cache accesses.

» Validity is provided only on a line basis. Unless a whole line is loaded on a cache miss, the cache
controller does not validate data in the cache line.

Write accesses designated as cache-inhibited by the CACR or ACR bypass the cache and perform a
corresponding external write.

Normally, cache-inhibited reads bypass the cache and are performed on the external bus. The exception to
this normal operation occurs when all of the following conditions are true during a cache-inhibited read:
* The cache-inhibited fill buffer bit, CACR[DNFB], is set.
» The access is an instruction read.
» The access is normal (that is, transfer type (TT) equals 0).
In this case, an entire line is fetched and stored in the fill buffer. It remains valid there, and the cache can

service additional read accesses from this buffer until either another fill or a cache-invalidate-all operation
occurs.

MCF547x Reference Manual, Rev. 5

Freescale Semiconductor 7-11

Valid cache entries that match during cache-inhibited address accesses are neither pushed nor invalidated.
Such a scenario suggests that the associated cache mode for this address space was changed. To avoid this,
it is generally recommended to use the CPUSHL instruction to push or invalidate the cache entry or set
CACR[DCINVA] to invalidate the data cache before switching cache modes.

7.9.1 Caching Modes

For every memory reference generated by the processor or debug module, a set of effective attributes is
determined based on the address and the ACRs. Caching modes determine how the cache handles an
access. A data access can be cacheable in either write-through or copyback mode; it can be cache-inhibited
in precise or imprecise modes. For normal accesses, the ACRn[CM] bit corresponding to the address of
the access specifies the caching modes. If an address does not match an ACR, the default caching mode is
defined by CACR[DDCM,IDCM]. The specific algorithm is as follows:

if (address == ACRO-address including mask)
effective attributes = ACRO attributes
else if (address == ACRl-address including mask)
effective attributes = ACR1 attributes
else effective attributes = CACR default attributes

Addresses matching an ACR can also be write-protected using ACR[W]. Addresses that do not match
either ACR can be write-protected using CACR[DW].

Reset disables the cache and clears all CACR bits. As shown in Figure 7-4, reset does not automatically
invalidate cache entries; they must be invalidated through software.

The ACRs allow the defaults selected in the CACR to be overridden. In addition, some instructions (for
example, CPUSHL) and processor core operations perform accesses that have an implicit caching mode
associated with them. The following sections discuss the different caching accesses and their associated
cache modes.

79.1.1 Cacheable Accesses

If ACRN[CM] or the default field of the CACR indicates write-through or copyback, the access is
cacheable. A read access to a write-through or copyback region is read from the cache if matching data is
found. Otherwise, the data is read from memory and the cache is updated. When a line is being read from
memory for either a write-through or copyback read miss, the longword within the line that contains the
core-requested data is loaded first and the requested data is given immediately to the processor, without
waiting for the three remaining longwords to reach the cache.

The following sections describe write-through and copyback modes in detail. Note that some of this
information applies to data caches only.

7.9.1.1.1 Write-Through Mode (Data Cache Only)

Write accesses to regions specified as write-through are always passed on to the external bus, although the
cycle can be buffered, depending on the state of CACR[DESB]. Writes in write-through mode are handled
with a no-write-allocate policy—that is, writes that miss in the cache are written to the external bus but do
not cause the corresponding line in memory to be loaded into the cache. Write accesses that hit always
write through to memory and update matching cache lines. The cache supplies data to data-read accesses
that hit in the cache; read misses cause a new cache line to be loaded into the cache.

MCF547x Reference Manual, Rev. 5

7-12 Freescale Semiconductor

CacheOperation

7.9.1.1.2 Copyback Mode (Data Cache Only)

Copyback regions are typically used for local data structures or stacks to minimize external bus use and
reduce write-access latency. Write accesses to regions specified as copyback that hit in the cache update
the cache line and set the corresponding M bit without an external bus access.

The cache should be flushed using the CPUSHL instruction before invalidating the cache in copyback
mode using the CINV bit. Modified cache data is written to memory only if the line is replaced because of
a miss or a CPUSHL instruction pushes the line. If a byte, word, longword, or line write access misses in
the cache, the required cache line is read from memory, thereby updating the cache. When a miss selects
a modified cache line for replacement, the modified cache data moves to the push buffer. The replacement
line is read into the cache and the push buffer contents are then written to memory.

7.9.1.2 Cache-Inhibited Accesses

Memory regions can be designated as cache-inhibited, which is useful for memory containing targets such
as 1/0 devices and shared data structures in multiprocessing systems. It is also important to not cache the
MCF54x7 memory-mapped registers. If the corresponding ACRn[CM] or CACR[DDCM] indicates
cache-inhibited, precise or imprecise, the access is cache-inhibited. The caching operation is identical for
both cache-inhibited modes, which differ only regarding recovery from an external bus error.

In determining whether a memory location is cacheable or cache-inhibited, the CPU checks
memory-control registers in the following order:
1. RAMBARs
ACRO and ACR2

2.
3. ACR1 and ACR3
4.

If an access does not hit in the RAMBARS or the ACRs, the default is provided for all accesses in
CACR.

Cache-inhibited write accesses bypass the cache, and a corresponding external write is performed.
Cache-inhibited reads bypass the cache and are performed on the external bus, except when all of the
following conditions are true:

* The cache-inhibited fill-buffer bit, CACR[DNFB], is set.
e The access is an instruction read.
» The access is normal (that is, TT = 0).

In this case, a fetched line is stored in the fill buffer and remains valid there; the cache can service
additional read accesses from this buffer until another fill occurs or a cache-invalidate-all operation occurs.

If ACRn[CM] indica