

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lay bed ON Semiconductor and its officers, employees, ween if such claim alleges that ON Semiconductor was negligent regarding the d

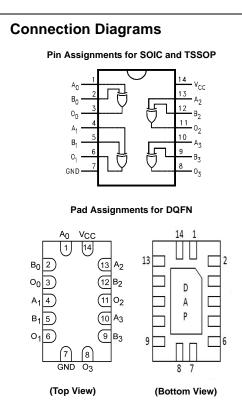
FAIRCHILD SEMICONDUCTOR®	July 1999 Revised December 2013
74VCX86 Low Voltage Quad 2-Input Ex 3.6V Tolerant Inputs and Out	
General Description The VCX86 contains four 2-input exclusive OR gates. This product is designed for low voltage (1.2V to 3.6V) V _{CC} applications with I/O compatibility up to 3.6V The 74VCX86 is fabricated with an advanced CMOS tech- nology to achieve high-speed operation while maintaining low CMOS power dissipation.	 Features 1.2V to 3.6V V_{CC} supply operation 3.6V tolerant inputs and outputs t_{PD} 3.0 ns max for 3.0V to 3.6V V_{CC} Power-off high impedance inputs and outputs Static Drive (I_{OH}/I_{OL}) ±24 mA @ 3.0V V_{CC} Uses proprietary noise/EMI reduction circuitr Latchup performance exceeds JEDEC 78 conditions ESD performance: Human body model > 2000V Machine model > 250V Leadless Pb-Free DQFN package

Ordering Code:

Order Number F	Package Number	Package Description
74VCX86M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
74VCX86BQX (Note 1)	MLP014A	Pb-Free 14-Terminal Depopulated Quad Very-Thin Flat Pack No Leads (DQFN), JEDE MO-241, 2.5 x 3.0mm
74VCX86MTC	MTC14	14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
Pb-Free package per		cify by appending the suffix letter "X" to the ordering code.

74VCX86

Logic Symbol IEEE/IEC


0	
A ₁ —	0,
B ₁ —	0 ₁
A ₂ —	0
в ₂ —	0 ₂
Α ₃ —	0
B ₃ —	0 ₃

00

Pin Descriptions

Pin Names	Description
A _n , B _n	Inputs
O _n	Outputs
DAP	No Connect

Note: DAP (Die Attach Pad)

www.fairchildsemi.com

Absolute Maximum Ratings(Note 2)

Supply Voltage (V _{CC})	-0.5V to +4.6V
DC Input Voltage (V _I)	-0.5V to +4.6V
Output Voltage (V _O)	
HIGH or LOW State (Note 3)	–0.5V to V _{CC} +0.5V
$V_{CC} = 0V$	-0.5V to +4.6V
DC Input Diode Current (I _{IK}) V _I < 0V	–50 mA
DC Output Diode Current (I _{OK})	
$V_{O} < 0V$	–50 mA
$V_{O} > V_{CC}$	+50 mA
DC Output Source/Sink Current	
(I _{OH} /I _{OL})	±50 mA
DC V _{CC} or GND Current per	
Supply Pin (I _{CC} or Ground)	±100 mA
Storage Temperature Range (T_{STG})	–65°C to +150°C

Recommended Operating Conditions (Note 4)				
Power Supply				
Operating	1.2V to 3.6V			
Input Voltage	-0.3V to +3.6V			
Output Voltage (V _O)				
HIGH or LOW State	0V to V _{CC}			
Output Current in I _{OH} /I _{OL}				
V _{CC} = 3.0V to 3.6V	±24 mA			
$V_{CC} = 2.3 V$ to 2.7 V	±18 mA			
V _{CC} = 1.65V to 2.3V	±6 mA			
V _{CC} = 1.4V to 1.6V	±2 mA			
$V_{CC} = 1.2V$	±100 μA			
Free Air Operating Temperature (T _A)	-40°C to +85°C			
Minimum Input Edge Rate ($\Delta t / \Delta V$)				
$V_{IN} = 0.8V$ to 2.0V, $V_{CC} = 3.0V$	10 ns/V			
Note 2. The Absolute Maximum Datings are those values howed which				

74VCX86

Note 2: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 3: I_O Absolute Maximum Rating must be observed.

Note 4: Floating or unused inputs must be held HIGH or LOW.

DC Electrical Characteristics

Symbol	Parameter	Conditions	V _{cc} (V)	Min	Max	Units
VIH	HIGH Level Input Voltage		2.7 - 3.6	2.0		
			2.3 - 2.7	1.6		
			1.65 - 2.3	$0.65 \times V_{CC}$		V
			1.4 - 1.6	$0.65 \times V_{CC}$		
			1.2	$0.65 \times V_{CC}$		
V _{IL}	LOW Level Input Voltage		2.7 - 3.6		0.8	
			2.3 - 2.7		0.7	
			1.65 - 2.3		$0.35\times V_{CC}$	V
			1.4 - 1.6		$0.35 \times V_{CC}$	
			1.2			
V _{OH}	HIGH Level Output Voltage	I _{OH} = -100 μA	2.7 - 3.6	V _{CC} - 0.2		
		$I_{OH} = -12 \text{ mA}$	2.7	2.2		
		$I_{OH} = -18 \text{ mA}$	3.0	2.4		
		$I_{OH} = -24 \text{ mA}$	3.0	2.2		
		$I_{OH} = -100 \ \mu A$	2.3 - 2.7	V _{CC} - 0.2		
		$I_{OH} = -6 \text{ mA}$	2.3	2.0		
		$I_{OH} = -12 \text{ mA}$	2.3	1.8		V
		I _{OH} = -18 mA	2.3	1.7		
		$I_{OH} = -100 \ \mu A$	1.65 - 2.3	V _{CC} - 0.2		
		$I_{OH} = -6 \text{ mA}$	1.65	1.25		
		$I_{OH} = -100 \ \mu A$	1.4 - 1.6	V _{CC} - 0.2		
		$I_{OH} = -2 \text{ mA}$	1.4	1.05		
		I _{OH} = -100 μA	1.2	V _{CC} - 0.2		

74VCX86

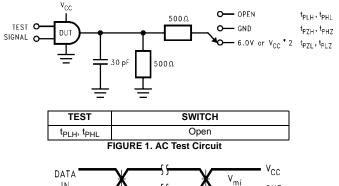
DC Electrical Characteristics (Continued)

V_{CC} Symbol Parameter Conditions Min Max Units (V) $I_{OL} = 100 \ \mu A$ V_{OL} LOW Level Output Voltage 2.7 - 3.6 0.2 $I_{OL} = 12 \text{ mA}$ 2.7 0.4 $I_{OL} = 18 \text{ mA}$ 3.0 0.4 I_{OL} = 24 mA 3.0 0.55 $I_{OL} = 100 \ \mu A$ 2.3 - 2.7 0.2 $I_{OL} = 12 \text{ mA}$ 2.3 0.4 V I_{OL} = 18 mA 2.3 0.6 $I_{OL} = 100 \ \mu A$ 1.65 - 2.3 0.2 $I_{OL} = 6 \text{ mA}$ 1.65 0.3 $I_{OL} = 100 \ \mu A$ 1.4 - 1.6 0.2 $I_{OL} = 2 \text{ mA}$ 1.4 0.35 $I_{OL} = 100 \ \mu A$ 1.2 0.05 Input Leakage Current $0 \leq V_I \leq 3.6V$ 1.2 - 3.6 ±5.0 μА I_I Power-OFF Leakage Current 10 $0 \leq \left(V_I, \; V_O\right) \leq 3.6 V$ 0 μΑ IOFF $V_I = V_{CC} \text{ or } GND$ Quiescent Supply Current 1.2 - 3.6 20 I_{CC} μA $V_{CC} \leq \left(V_I\right)$ 1.2 - 3.6 ±20 2.7 - 3.6 750 ΔI_{CC} Increase in I_{CC} per Input $V_{IH} = V_{CC} - 0.6V$ μА

AC Electrical Characteristics (Note 5)

Symbol	Parameter	Conditions	V_{CC} $T_A = -40^{\circ}C$ to +85°C	V_{CC} $T_A = -40^{\circ}$	Units	Units	
			(V)	Min	Max		Number
t _{PHL}	Propagation Delay	$C_L = 30 \text{ pF}, R_L = 500\Omega$	$\textbf{3.3}\pm\textbf{0.3}$	0.6	3.0		
t _{PLH}	PLH		2.5 ± 0.2	0.8	3.9		Figures 1, 2
			$\textbf{1.8} \pm \textbf{0.15}$	1.0	7.8	ns	1, 2
		$C_L = 15 \text{ pF}, R_L = 2k\Omega$	1.5 ± 0.1	1.5 ± 0.1 1.0 15.6	15.6		Figures
		1.2	1.5	39		3, 4	
t _{OSHL}	Output to Output Skew	$C_L = 30 \text{ pF}, R_L = 500\Omega$	3.3 ± 0.3		0.5		
t _{OSLH} (Note 6)		2.5 ± 0.2		0.5			
			1.8 ± 0.15		0.75	ns	
		$C_L = 15 \text{ pF}, R_L = 2k\Omega$	1.5 ± 0.1		1.5		
			1.2		1.5		

Note 5: For $C_L = 50_PF$, add approximately 300 ps to the AC maximum specification.


Note 6: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}).

	_	V _{cc}	$T_A = +25^{\circ}C$		
Symbol	Parameter	Conditions	(V)	Typical	Units
V _{OLP}	Quiet Output Dynamic Peak V _{OL}	$C_{L} = 30 \text{ pF}, V_{IH} = V_{CC}, V_{IL} = 0V$	1.8	0.25	
			2.5	0.6	V
			3.3	0.8	
V _{OLV}	Quiet Output Dynamic Valley V _{OL}	$C_L = 30 \text{ pF}, \text{ V}_{IH} = \text{V}_{CC}, \text{ V}_{IL} = 0\text{V}$	1.8	-0.25	
			2.5	-0.6	V
			3.3	-0.8	
V _{OHV}	Quiet Output Dynamic Valley VOH	$C_L = 30 \text{ pF}, \text{ V}_{IH} = \text{V}_{CC}, \text{ V}_{IL} = 0 \text{V}$	1.8	1.5	
			2.5	1.9	V
			3.3	2.2	

Capacitance

Symbol	Parameter	Conditions	T _A = +25°C Typical	Units
CIN	Input Capacitance	V_{CC} = 1.8, 2.5V or 3.3V, V_{I} = 0V or V_{CC}	6	pF
C _{OUT}	Output Capacitance	$V_I = 0V \text{ or } V_{CC}, V_{CC} = 1.8V, 2.5V \text{ or } 3.3V$	7	pF
C _{PD}	Power Dissipation Capacitance	V_{I} = 0V or V_{CC},f = 10 MHz, V_{CC} = 1.8V, 2.5V or 3.3V	20	pF

AC Loading and Waveforms (V_CC 3.3V \pm 0.3V to 1.8V \pm 0.15V)

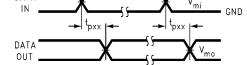
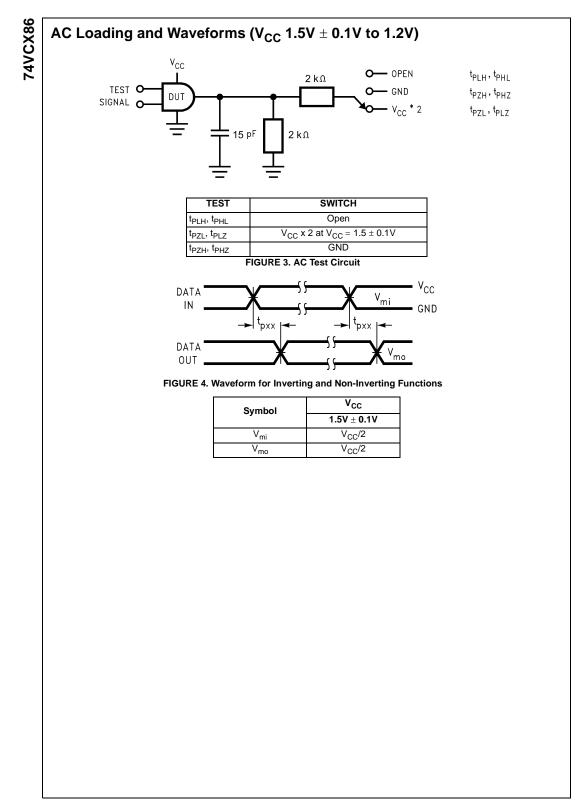
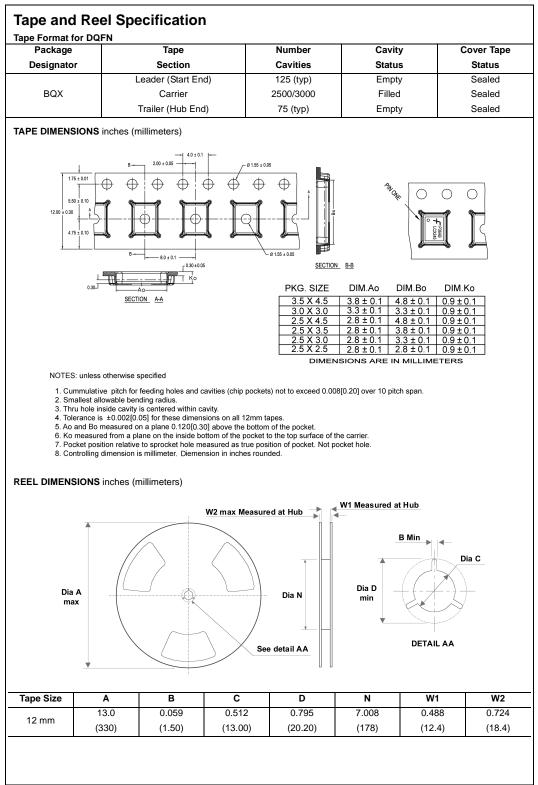
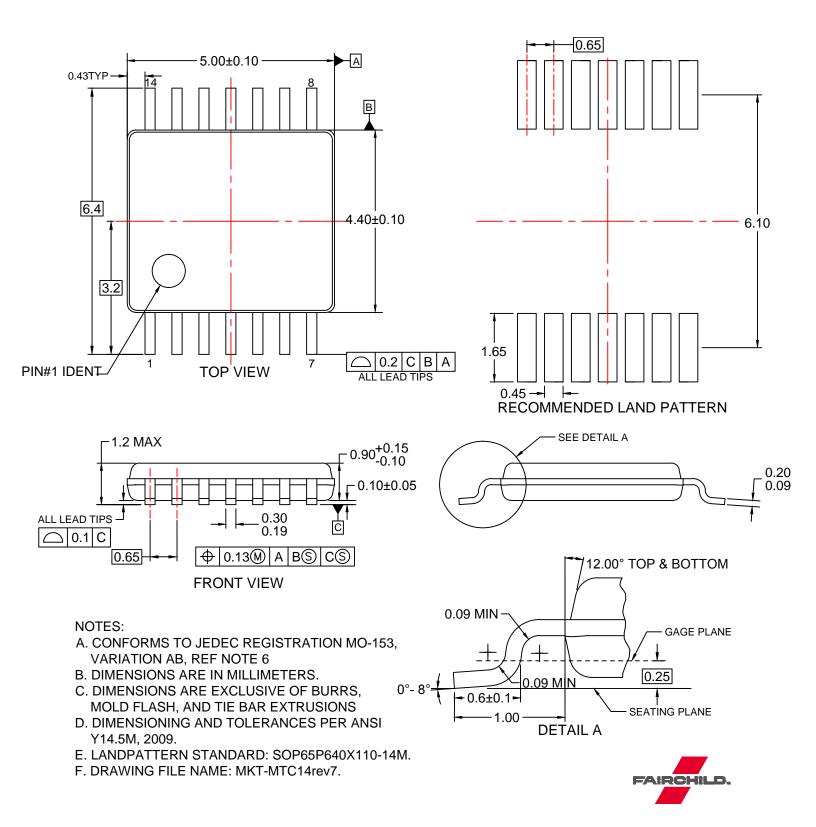
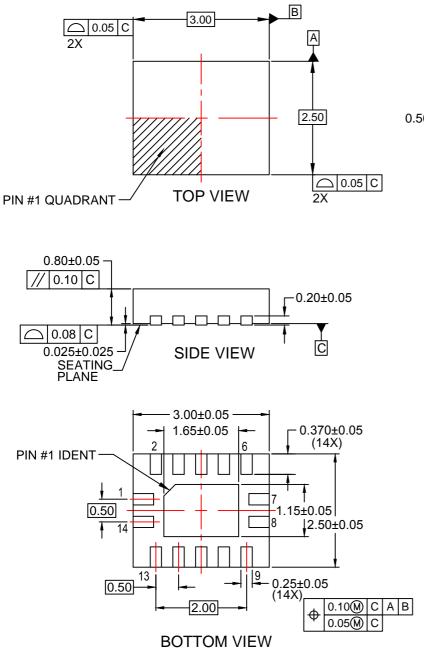
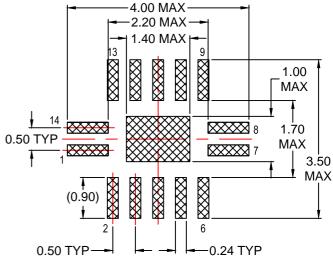




FIGURE 2. Waveform for Inverting and Non-Inverting Functions

Symbol		v _{cc}	
Cymbol	$3.3V \pm 0.3V$	$\textbf{2.5V} \pm \textbf{0.2V}$	1.8V ± 0.15V
V _{mi}	1.5V	V _{CC} /2	V _{CC} /2
V _{mo}	1.5V	V _{CC} /2	V _{CC} /2


5





74VCX86

www.fairchildsemi.com

RECOMMENDED LAND PATTERN

NOTES:

- A. CONFORMS TO JEDEC REGISTRATION MO-241, VARIATION AA
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 2009.
- D. LAND PATTERN RECOMMENDATION IS EXISTING INDUSTRY LAND PATTERN.
- E. DRAWING FILENAME: MKT-MLP14Arev2.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC