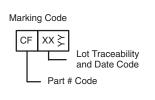
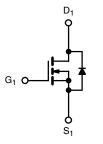


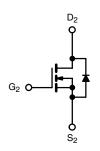
Dual N-Channel 20 V (D-S) MOSFET

PRODUCT SUMMARY					
V _{DS} (V)	$R_{DS(on)}(\Omega)$	I _D (A) ^a	Q _g (Typ.)		
	0.168 at V _{GS} = 4.5 V	1.3 ^a			
20	0.200 at V _{GS} = 2.5 V	1.3 ^a	1.6 nC		
	0.250 at V _{GS} = 1.8 V	1.3 ^a			

FEATURES


- Halogen-free According to IEC 61249-2-21 Definition
- TrenchFET® Power MOSFET
- Compliant to RoHS Directive 2002/95/EC




APPLICATIONS

Load Switch for Portable Applications

Ordering Information: Si1988DH-T1-E3 (Lead (Pb)-free)

Si1988DH-T1-GE3 (Lead (Pb)-free and Halogen-free)

N-Channel MOSFET

N-Channel MOSFET

Parameter		Symbol	Limit	Unit	
Drain-Source Voltage		V _{DS}	20	V	
Gate-Source Voltage	V_{GS}	± 8			
	T _C = 25 °C		1.3 ^a		
Continuous Dunin Comment (T. 150 °C)	T _C = 70 °C	_	1.3 ^a		
Continuous Drain Current (T _J = 150 °C)	T _A = 25 °C	I _D	1.3 ^{a, b, c}		
	T _A = 70 °C		1.3 ^{a, b, c}	Α	
Pulsed Drain Current	I _{DM}	4			
Continuous Source-Drain Diode Current	T _C = 25 °C	1	1.0		
Continuous Source-Drain Diode Current	T _A = 25 °C	I _S	0.61 ^{b, c}		
	T _C = 25 °C		1.25		
Maximum Dayyar Dissipation	T _C = 70 °C	В	0.8	w	
Maximum Power Dissipation	T _A = 25 °C	P _D	0.74 ^{b, c}	VV	
	T _A = 70 °C		0.47 ^{b, c}		
Operating Junction and Storage Temperature Ra	T _J , T _{stg}	- 55 to 150	°C		
Soldering Recommendations (Peak Temperature	_	260			

THERMAL RESISTANCE RATINGS						
Parameter		Symbol	Typical	Maximum	Unit	
Maximum Junction-to-Ambient ^{b, f}	t ≤ 5 s	R _{thJA}	130	170	°C/W	
Maximum Junction-to-Foot (Drain)	Steady State	R _{thJF}	80	100		

Notes

- a. Package limited.
- b. Surface mounted on 1" x 1" FR4 board.
- c. t = 5 s.
- d. Maximum under steady state conditions is 220 $^{\circ}\text{C/W}.$

Si1988DH

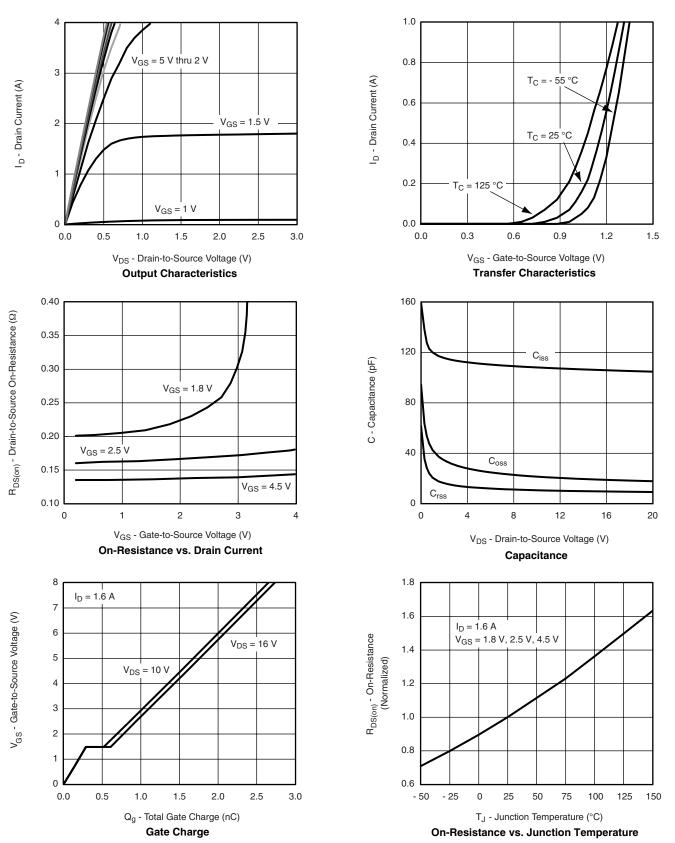
Vishay Siliconix

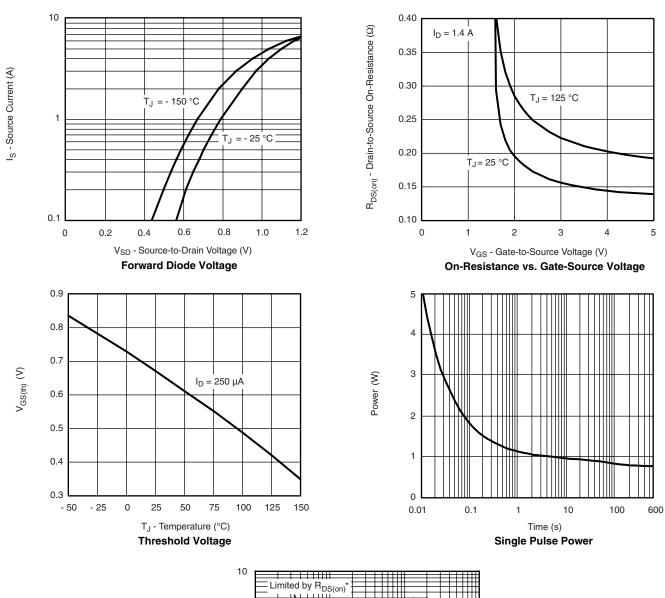
Static Drain-Source Breakdown Voltage V_{DS} $V_{GS} = 0 \text{ V}$, $I_D = 250 \text{ μA}$ 20 V Vps Temperature Coefficient $\Delta V_{DS}/T_L$ 19.7	SPECIFICATIONS T _J = 25 °C, unless otherwise noted								
	Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit		
V _{DS} Temperature Coefficient AV _{DS} (T) V _{OS(M)} Temperature Coefficient AV _{DS} (T) V _{DS} (T) AV _{DS} (T) V _{DS}	Static					•	1		
V _{DS} Temperature Coefficient AV _{DS} (T) V _{OS(M)} Temperature Coefficient AV _{DS} (T) V _{DS} (T) AV _{DS} (T) V _{DS}	Drain-Source Breakdown Voltage	V _{DS}	$V_{GS} = 0 \text{ V, I}_{D} = 250 \mu\text{A}$	20			V		
Vasion Temperature Coefficient ΔVGS(m)/Tyl VDS = VGS, ID = 250 μA - 2.4 I V Gate-Source Threshold Voltage VGS(m) VDS = VGS, ID = 250 μA 0.4 1 V Zero Gate Voltage Drain Current IGSS VDS = 0 V, VGS = 8 V ± 100 ns On-State Drain Current [®] ID(on) VDS = 20 V, VGS = 0 V, TJ = 55 °C 10 A On-State Drain Current [®] ID(on) VDS = 5 V, VGS = 4 V, UD = 1.4 A 0.139 0.168 A Drain-Source On-State Resistance [®] PRDS(on) VDS = 4 V, UD = 1.4 A 0.165 0.200 0.205 0.250 0.205 0.250 0.205 0.250 0.205 0.250 0.205 0.250 0.205 0.250 0.205 0.250 0.205 0.250 0.205 0.205 0.205 0.205 0.205 0.205 0.205	V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	J 050 A		19.7		mV/°C		
Cate-Source Leakage	V _{GS(th)} Temperature Coefficient		I _D = 250 μA		- 2.4				
Gate-Source Leakage I _{GSS} V _{DS} = 0 V, V _{GS} = ± 8 V	Gate-Source Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = 250 \mu A$	0.4		1	V		
2 2 2 2 2 2 2 2 2 2	Gate-Source Leakage		$V_{DS} = 0 \text{ V}, V_{GS} = \pm 8 \text{ V}$			± 100	ns		
No. State Drain Current ^a 1 _{D(m)} V _{DS} = 20 V, V _{GS} = 4.5 V 4	Zara Cata Valtana Desir Commet		V _{DS} = 20 V, V _{GS} = 0 V	1		1			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Zero Gate voltage Drain Current		$V_{DS} = 20 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55 ^{\circ}\text{C}$			10			
Drain-Source On-State Resistance ^a R _{DS} (on) V _{GS} = 2.5 V, I _D = 1.3 A 0.165 0.200 Ω Forward Transconductance ^a g _{IS} V _{DS} = 4 V, I _D = 0.4 A 0.205 0.250 Ω Dynamic ^b Use of the properties of the	On-State Drain Current ^a	I _{D(on)}	$V_{DS} \le 5 \text{ V}, V_{GS} = 4.5 \text{ V}$	4			Α		
V _{GS} = 1.8 V, I _D = 0.4 A 0.205 0.250		, ,	V _{GS} = 4.5 V, I _D = 1.4 A		0.139	0.168	1		
No.	Drain-Source On-State Resistance ^a	R _{DS(on)}	V _{GS} = 2.5 V, I _D = 1.3 A		0.165	0.200	Ω		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $, ,	V _{GS} = 1.8 V, I _D = 0.4 A		0.205	0.250	1		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Forward Transconductance ^a	9 _{fs}	$V_{DS} = 4 \text{ V}, I_{D} = 1.4 \text{ A}$		4		S		
Output Capacitance Coss Coss Reverse Transfer Capacitance V _{DS} = 10 V, V _{GS} = 0 V, f = 1 MHz 25 pF Total Gate Charge O _G V _{DS} = 10 V, V _{GS} = 8 V, I _D = 1.6 A 2.7 4.1 A1.6 2.4 A1.6	Dynamic ^b	1				l .			
Output Capacitance C _{Oss} Reverse Transfer Capacitance V _{DS} = 10 V, V _{GS} = 0 V, f = 1 MHz 25	Input Capacitance	C _{iss}			110		pF		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Output Capacitance	+	V _{DS} = 10 V, V _{GS} = 0 V, f = 1 MHz		25				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Reverse Transfer Capacitance	C _{rss}			11				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	T. 10 . 0	Q _g	$V_{DS} = 10 \text{ V}, V_{GS} = 8 \text{ V}, I_D = 1.6 \text{ A}$		2.7	4.1	nC		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	lotal Gate Charge				1.6	2.4			
Gate-Drain Charge Qgd f = 1 MHz 0.25 □ Gate Resistance Rg f = 1 MHz 4 Ω Turn-On Delay Time tq(on) VDD = 10 V, RL = 7.7 Ω 20 30 Fise Time tf 10 = 1.3 A, VGEN = 4.5 V, Rg = 1 Ω 15 25 Fall Time tf 10 = 1.3 A, VGEN = 8 V, Rg = 1 Ω 5 10 15 Turn-on Delay Time tf VDD = 10 V, RL = 7.7 Ω 11 20 15 25 Fall Time tr VDD = 10 V, RL = 7.7 Ω 11 20 15 10 15 15 10 15 10 15 10 15 10 15 10 15 10 11 20 11 20 11 20 11 20 11 20 11 20 11 11 20 11 11 11 11 11 11 11 11 12 11 11 12 12 12 14 14 14	Gate-Source Charge				0.3				
$ \begin{array}{ c c c c c c } \hline \text{Gate Resistance} & R_g & f = 1 \text{MHz} & 4 & \Omega \\ \hline \text{Turn-On Delay Time} & t_{d(on)} & & & & & 12 \\ \hline \text{Rise Time} & t_r & V_{DD} = 10 \text{V}, R_L = 7.7 \Omega & 20 & 30 \\ \hline \text{Turn-Off Delay Time} & t_d(off) & & & & 15 & 25 \\ \hline \text{Fall Time} & t_r & & & 10 & 15 \\ \hline \text{Turn-On Delay Time} & t_{d(on)} & & & & 5 & 10 \\ \hline \text{Rise Time} & t_r & & V_{DD} = 10 \text{V}, R_L = 7.7 \Omega & 11 & 20 \\ \hline \text{Turn-Off Delay Time} & t_r & & & 5 & 10 \\ \hline \text{Rise Time} & t_r & & & & 11 & 20 \\ \hline \text{Turn-Off Delay Time} & t_{d(off)} & & & & 11 & 20 \\ \hline \text{Turn-Off Delay Time} & t_{r} & & & & & 11 & 20 \\ \hline \text{Fall Time} & t_r & & & & & 10 & 15 \\ \hline \textbf{Pall Time} & t_r & & & & & & 11 & 20 \\ \hline \textbf{Drain-Source Body Diode Characteristics} & & & & & & 11 & 20 \\ \hline \textbf{Drain-Source Body Diode Characteristics} & & & & & & 10 & 15 \\ \hline \textbf{Pulse Diode Forward Current} & I_S & & & & & & & & 1 & 4 \\ \hline \textbf{Body Diode Voltage} & & V_{SD} & & I_S = 1.3 \text{A}, V_{GS} = 0 \text{V} & & 0.8 & 1.2 & V \\ \hline \textbf{Body Diode Reverse Recovery Time} & & t_{rr} & & & & & 20 & 40 & nc \\ \hline \textbf{Reverse Recovery Fall Time} & & t_a & & & & & & & & & & & & & & & & & & &$	Gate-Drain Charge				0.25				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate Resistance	_	f = 1 MHz		4		Ω		
$ \begin{array}{ c c c c c }\hline \text{Rise Time} & t_r & V_{DD} = 10 \text{ V}, R_L = 7.7 \Omega \\ \hline \text{Turn-Off Delay Time} & t_{d(off)} & 15 & 25 \\ \hline \text{Fall Time} & t_f & 10 & 15 \\ \hline \text{Turn-on Delay Time} & t_{d(on)} & & & 5 & 10 \\ \hline \text{Rise Time} & t_r & V_{DD} = 10 \text{ V}, R_L = 7.7 \Omega \\ \hline \text{Turn-Off Delay Time} & t_r & & 5 & 10 \\ \hline \text{Turn-Off Delay Time} & t_{d(off)} & & & 5 & 10 \\ \hline \text{Fall Time} & t_r & & & 11 & 20 \\ \hline \text{Turn-Off Delay Time} & t_{d(off)} & & & & 11 & 20 \\ \hline \text{Fall Time} & & t_r & & & 6 & 10 \\ \hline \textbf{Drain-Source Body Diode Characteristics} & & & & & & & \\ \hline \textbf{Continuous Source-Drain Diode Current} & I_S & T_C = 25 ^{\circ}\text{C} & & 1 & A \\ \hline \textbf{Pulse Diode Forward Current} & I_{SM} & & & 4 \\ \hline \textbf{Body Diode Reverse Recovery Time} & t_{rr} & & & 20 & 40 & ns \\ \hline \textbf{Body Diode Reverse Recovery Charge} & Q_{rr} & & & & 20 & 40 & ns \\ \hline \textbf{Reverse Recovery Fall Time} & t_a & & & & & & \\ \hline \end{array}$	Turn-On Delay Time				8	12	- ns		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Rise Time		$V_{DD} = 10 \text{ V, R}_1 = 7.7 \Omega$		20	30			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-Off Delay Time	t _{d(off)}			15	25			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Fall Time				10	15			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-on Delay Time				5	10			
Fall Time tr 6 10 Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current I_S $T_C = 25 ^{\circ}\text{C}$ 1 A Pulse Diode Forward Current I_{SM} 4 Body Diode Voltage V_{SD} $I_S = 1.3 \text{A}, V_{GS} = 0 ^{\circ}\text{V}$ $0.8 1.2 ^{\circ}\text{V}$ Body Diode Reverse Recovery Time t_{rr} Body Diode Reverse Recovery Charge Q_{rr} Reverse Recovery Fall Time t_a $I_F = 1.3 \text{A}, \text{dl/dt} = 100 \text{A/µs}, T_J = 25 ^{\circ}\text{C}$ $I_F = 1.3 \text{A}, \text{dl/dt} = 100 \text{A/µs}, T_J = 25 ^{\circ}\text{C}$	Rise Time				11	20			
	Turn-Off Delay Time	t _{d(off)}	$I_D \cong 1.3 \text{ A}, V_{GEN} = 8 \text{ V}, R_g = 1 \Omega$		10	15			
	Fall Time				6	10			
Pulse Diode Forward Current I_{SM} Body Diode Voltage V_{SD} Body Diode Reverse Recovery Time t_{rr} Body Diode Reverse Recovery Charge Q_{rr} Reverse Recovery Fall Time t_a $I_{S} = 1.3 \text{ A}, V_{GS} = 0 \text{ V}$ $I_{S} = 1.3 \text{ A}, V_{$	Drain-Source Body Diode Characteristic	:s				l .	1		
Pulse Diode Forward Current I_{SM} 4 Body Diode Voltage V_{SD} $I_S = 1.3 \text{ A}, V_{GS} = 0 \text{ V}$ $0.8 1.2 \text{ V}$ Body Diode Reverse Recovery Time t_{rr} $20 40 \text{ ns}$ Body Diode Reverse Recovery Charge Q_{rr} Reverse Recovery Fall Time t_a $I_F = 1.3 \text{ A}, \text{dI/dt} = 100 \text{ A/µs}, T_J = 25 \text{ °C}$	Continuous Source-Drain Diode Current	Is	T _C = 25 °C			1	А		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pulse Diode Forward Current	1				4			
Body Diode Reverse Recovery Time t_{rr} Body Diode Reverse Recovery Charge Q_{rr} Reverse Recovery Fall Time t_a	Body Diode Voltage		I _S = 1.3 A, V _{GS} = 0 V		0.8	1.2	V		
Body Diode Reverse Recovery Charge Q_{rr} $I_F = 1.3 \text{ A}, \text{ dI/dt} = 100 \text{ A/}\mu\text{s}, T_J = 25 ^{\circ}\text{C}$ $0.0 0.0 $		1			20	40	ns		
Reverse Recovery Fall Time t _a 16 ns			†		20	40	nC		
ns ns			$I_F = 1.3 \text{ A, dI/dt} = 100 \text{ A/}\mu\text{s, T}_J = 25 ^{\circ}\text{C}$		16				

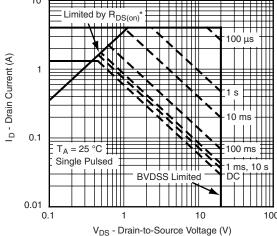
Notes:

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

a. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2 %.


b. Guaranteed by design, not subject to production testing.


TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted



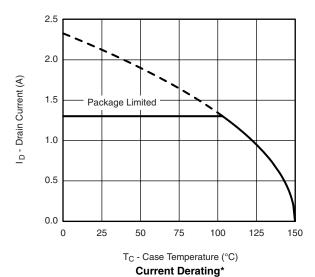
Vishay Siliconix

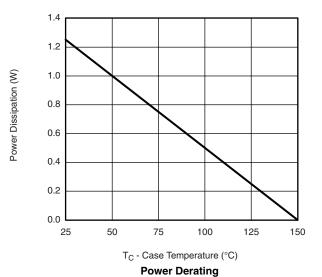
VISHAY

TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

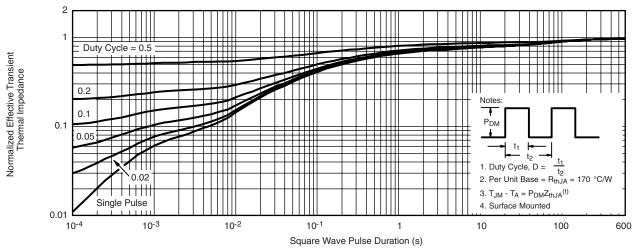


* V_{GS} > minimum V_{GS} at which R_{DS(on)} is specified

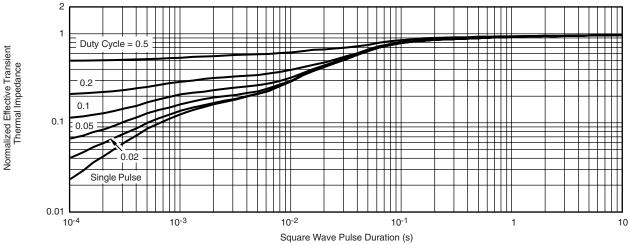

Safe Operating Area, Junction-to-Case



TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted



* The power dissipation P_D is based on $T_{J(max)} = 150$ °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit


Vishay Siliconix

VISHAY

TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

Normalized Thermal Transient Impedance, Junction-to-Ambient

Normalized Thermal Transient Impedance, Junction-to-Foot

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppq?74296.

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.