

November 2015 DocID028648 Rev 1 1/28

 www.st.com

UM1986
User manual

Getting started with the software package for STEVAL-IDI001V1,
based on STM32Cube

Introduction
This document describes how to get started with the STEVAL-IDI001V1 software.

STEVAL-IDI001V1 software provides a complete framework for STM32 to build applications using
heterogeneous sensor data. It is easily portable across different MCU families thanks to STM32Cube™.
This package contains a sample application that acquires raw data from different kinds of sensors,
packs it into a custom protocol and streams it via USB (Virtual COM Port). Moreover, the SW is able to
stream real time audio data to a PC via a standard USB audio-input driver.

This software provides a sample implementation for the STEVAL-IDI001V1 board, which is equipped
with an STM32F439 MCU, a motion sensor (IMU 9axes LSM9DS1), an environmental sensor for
pressure (LPS25HB), humidity and temperature (HTS221), a UV index (UVIS25), proximity and ambient
light sensors (VL6180x) and an omnidirectional digital microphone (MP34DT01).

The software is based on STM32Cube technology and expands the STM32Cube based range of
packages.

Contents UM1986

2/28 DocID028648 Rev 1

Contents

1 What is STM32Cube? ... 4

1.1 STM32Cube architecture ... 4

2 STEVAL-IDI001V1 software, expansion for STM32Cube 6

2.1 Overview .. 6

2.2 Architecture .. 6

2.3 Folders structure .. 7

2.4 APIs ... 8

2.5 Sample application description ... 8

2.5.1 Application architecture ... 8

2.5.2 Sensors acquisition process .. 9

2.5.3 Microphones acquisition processes .. 9

2.6 STCmdP: ST command protocol .. 10

2.6.1 Data format .. 10

2.6.2 Process involved in sending/receiving packets 10

2.6.3 Checksum Algorithm ... 11

2.6.4 Byte stuffing ... 12

2.6.5 Standard commands ... 12

2.6.6 CMD_Ping Example .. 13

2.6.7 Commands available ... 14

3 PC Utility ... 16

3.1 Data logger example .. 16

3.2 Data logger demo ... 16

3.3 PC audio recording utility example: Audacity 17

4 System setup guide .. 19

4.1 Hardware description ... 19

4.1.1 STEVAL-IDI001V1 ... 19

4.2 Software description ... 19

4.3 Hardware and Software setup .. 20

4.3.1 Hardware setup ... 20

4.3.2 Software setup ... 20

4.3.3 Data Logger demo setup Guide .. 21

4.3.4 SD card DataLog example .. 23

5 Acronyms and Abbreviations .. 25

6 References .. 26

UM1986 Contents

 DocID028648 Rev 1 3/28

7 Revision history ... 27

What is STM32Cube? UM1986

4/28 DocID028648 Rev 1

1 What is STM32Cube?

STMCube™ represents the STMicroelectronics initiative to make developers’ lives easier
by reducing development effort, time and cost. STM32Cube covers the STM32 portfolio.

STM32Cube version 1.x includes:

 STM32CubeMX, a graphical software configuration tool that allows the generation of
C initialization code using graphical wizards.

 A comprehensive embedded software platform specific to each series (such as the
STM32CubeF4 for the STM32F4 series), which includes:

 the STM32Cube HAL embedded abstraction-layer software, ensuring maximized
portability across the STM32 portfolio

 a consistent set of middleware components such as RTOS, USB, TCP/IP and
graphics

 all embedded software utilities with a full set of examples

1.1 STM32Cube architecture

The STM32Cube firmware solution is built around three independent levels that can easily
interact with one another, as described in the diagram below:

Figure 1: Firmware architecture

Level 0: This level is divided into three sub-layers:

 Board Support Package (BSP): this layer offers a set of APIs relative to the hardware
components in the hardware boards (Audio codec, IO expander, Touchscreen, SRAM
driver, LCD drivers. etc…) and composed of two parts:

UM1986 What is STM32Cube?

 DocID028648 Rev 1 5/28

 Component: is the driver relative to the external device on the board and not
related to the STM32, the component driver provides specific APIs to the external
components of the BSP driver, and can be ported on any other board.

 BSP driver: links the component driver to a specific board and provides a set of
easy to use APIs. The API naming convention is BSP_FUNCT_Action(): e.g.,
BSP_LED_Init(), BSP_LED_On().

It is based on modular architecture allowing is to be easily ported on any hardware by just
implementing the low level routines.

 Hardware Abstraction Layer (HAL): this layer provides the low level drivers and the
hardware interfacing methods to interact with the upper layers (application, libraries
and stacks). It provides generic, multi-instance and function-oriented APIs to help
offload user application development time by providing ready to use processes. For
example, for the communication peripherals (I2S, UART, etc.) it provides APIs for
peripheral initialization and configuration, data transfer management based on polling,
interrupt or DMA processes, and communication error management. The HAL Drivers
APIs are split in two categories: generic APIs providing common, generic functions to
all the STM32 series and extension APIs which provide special, customized functions
for a specific family or a specific part number.

 Basic peripheral usage examples: this layer houses the examples built around the
STM32 peripherals using the HAL and BSP resources only.

Level 1: This level is divided into two sub-layers:

 Middleware components: set of libraries covering USB Host and Device Libraries,
STemWin, FreeRTOS, FatFS, LwIP, and PolarSSL. Horizontal interaction among the
components in this layer is performed directly by calling the feature APIs, while vertical
interaction with low-level drivers is managed by specific callbacks and static macros
implemented in the library system call interface. For example, FatFs implements the
disk I/O driver to access a microSD drive or USB Mass Storage Class.

 Examples based on the middleware components: each middleware component comes
with one or more examples (or applications) showing how to use it. Integration
examples that use several middleware components are provided as well.

Level 2: This level is a single layer with a global, real-time and graphical demonstration
based on the middleware service layer, the low level abstraction layer and basic peripheral
usage applications for board-based functions.

STEVAL-IDI001V1 software, expansion for
STM32Cube

UM1986

6/28 DocID028648 Rev 1

2 STEVAL-IDI001V1 software, expansion for
STM32Cube

2.1 Overview

This software package expands the functionality of the STM32Cube platform.

The key features of the package are:

 Data logger sample application.

 Data storage on SD card.

 Complete middleware to easily communicate with a client application using a
proprietary protocol.

 Real time operating system (FreeRTOS) to implement multitasks applications.

 Audio+CDC class USB driver to allow the recognition of the device as a standard USB
microphone and a Virtual COM Port.

 Easy portability across different MCU families thanks to STM32Cube.

 Free user-friendly license terms.

This software enables data acquisition from different kinds of sensors, such as motion
sensors, environmental sensors, proximity and ambient light sensors via I²C or SPI for
some of them. Moreover, the data from up to four digital onboard MEMS microphones or
up to eight external MEMS microphones can be acquired using four GPIOs. The acquired
data can then be converted from PDM to the PCM audio communication and processing
standard.

Exploiting the capabilities of an included VCP and standard audio-input USB driver, the
device is recognized as a multichannel USB microphone and as a Virtual COM Port by
Microsoft Windows or any Unix-like system. The audio can be recorded using any standard
audio recording software, while for all the other functions, the C++ source code of the
proprietary protocol is provided inside the software package.

You can also save the data on a microSD card if there is one plugged into the relevant
connector.

2.2 Architecture

This software is an expansion for STM32Cube, as such it fully complies with the
STM32Cube architecture.

The software is based on the STM32CubeHAL, the hardware abstraction layer for the
STM32 microcontroller. The package extends STM32Cube by providing a Board Support
Package (BSP) for the STEVAL-IDI001V1 board and a component driver for each specific
sensor; each driver supports multiple instances of the same sensor at the same time.
Moreover the software package contains a middleware layer with components for serial
communication, the Real-Time operating system FreeRTOS for multitasking application
and the audio library (see Section 6: "References") needed for the PDM to PCM
conversion.

The software layers used by the application software to access and use the STEVAL-
IDI001V1 board are the following:

 STM32Cube HAL layer: consists of a set of simple, generic, multi-instance APIs
(application programming interfaces) which interact with the upper layer applications,
libraries and stacks. These generic and extension APIs are based on a common
framework which allows any layers they built on, such as the middleware layer, to
implement their functions without requiring specific hardware information for a given

UM1986 STEVAL-IDI001V1 software, expansion for
STM32Cube

 DocID028648 Rev 1 7/28

microcontroller unit (MCU). This structure improves library code reusability and
guarantees easy portability across other devices.

 Board Support Package (BSP) layer: provides software support for the STM32
Nucleo board peripherals, excluding the MCU. These specific APIs provide a
programming interface for certain board specific peripherals like LEDs, user buttons,
etc and can also be used to fetch individual board version information. It also provides
support for initializing, configuring and reading data.

Figure 2: STEVAL-IDI001V1 software architecture

2.3 Folders structure

Figure 3: X-CUBE-MEMS1 package folder structure

The following folders are included in the software package:

 Documentation: contains a compiled HTML file generated from the source code with
software component and API details.

 Drivers: contains the HAL drivers, the board specific drivers for each supported board
or hardware platform, including the onboard components and the CMSIS vendor-
independent hardware abstraction layer for the Cortex-M processor series.

STEVAL-IDI001V1 software, expansion for
STM32Cube

UM1986

8/28 DocID028648 Rev 1

 Middlewares: contains libraries and protocols for the PDM to PCM conversion
process, the audio-input USB driver and the real-time operating system FreeRTOS.

 Projects: contains a sample application to initialize and configure all the sensors,
acquire data and send it in an encapsulated proprietary protocol via USB or store it on
a microSD card. This application is available in three development environments (IAR
Embedded Workbench for ARM, RealView Microcontroller Development Kit (MDK-
ARM), Atollic TrueSTUDIO® for ARM).

 Utilities: contains the extra content needed for system setup, such as the PC
software utility and demonstration software.

2.4 APIs

Detailed technical information regarding the user APIs can be found in a compiled HTML
file inside the package Documentation folder, with full function and parameter descriptions.

2.5 Sample application description

An example application using the STEVAL-IDI001V1 is provided in the "Projects" directory.
Ready to use projects are available for multiple IDEs.

2.5.1 Application architecture

Following HAL initialization, SystemClock and RTC configuration, you need to configure the
USB CDC-Audio interface:

 Initialize the USB descriptor using
USBD_AUDIO_CDC_Init_Microphone_Descriptor(…) based on the desired sampling
frequency and channel number.

 Initialize the USB core and start the USB functions by calling: USBD_Init(…),
USBD_RegisterClass(…), USBD_AUDIO_CDC_RegisterInterface(…),
USBD_Start(…).

This application takes advantage of FreeRTOS in order to create multiple tasks that run
concurrently. Service and app tasks, together with related semaphores, are created in the
main function.

Service tasks:

 SERIAL_THREAD: manages the communication with an external device. The task is
always active and waiting to receive a message. This message is encapsulated in a
proprietary protocol named STCmdP, which is explained elsewhere in this document.
Finally, the received message is handled by the STCmdP_interpreter.c file and a
response is sent back if necessary.

 INIT_THREAD: manages start and stop commands for the datalog application. It
works in two modes:

 Autostart mode: if enabled (AUTOSTART define = 1), all the sensors are
initialized and the data stream starts immediately.

 Normal mode: if enabled (AUTOSTART define = 0), a start command is required
to set up the datalog application.

App task:

 READ_STREAM_THREAD: reads the exact timestamp, thanks to the RTC
peripherals, acquires data from all the sensors, encapsulates them in a STCmdP
message and sends it through the selected interfaces. The data streaming period is
set by the start command and a precise timer is initialized in the INIT_THREAD, every
time the timer counter reaches the request period, an interrupt is generated and the

UM1986 STEVAL-IDI001V1 software, expansion for
STM32Cube

 DocID028648 Rev 1 9/28

osStremSemaphore is released (see the callback in application_manager.c file). This
triggers sensor data reading and streaming.

 SD_CARD_THREAD: this thread is activated when a microSD card is plugged into the
relevant connector, and the user button is pressed. A dedicated semaphore is
released every second; the sensor data is acquired and saved in a file.

 PDM_PCM_THREAD: this thread is activated whenever 1 ms of PDM audio data has
been acquired. Then an audio process function converts the acquired data into PCM
samples.

 DB_NOISE_THREAD: measures ambient noise; dBNoise_callback is called every 64
ms.

2.5.2 Sensors acquisition process

This application is configured by default in normal mode (AUTOSTART define = 0), which
means that an initial command is needed to activate each sensor. When the corresponding
command is received, the sensor is initialized; if the procedure ends correctly, an ACK
message is sent back to the host, otherwise, a NACK message is sent.

If the application is configured in Autostart mode (AUTOSTART define = 1), all the sensors
are initialized automatically during the startup phase.

When the datalog application is started, the microcontroller reads the data from the active
sensors via I²C or SPI. Dates are then included in an STCmdP message and sent via USB.

All the APIs needed to interact with the sensors are implemented in the BSP layer inside a
file named steval_idi001v1_<sensortype>.c. The link functions necessary to communicate
with the sensors are instead located in steval_idi001v1.c.

2.5.3 Microphones acquisition processes

A digital MEMS microphone can be acquired through peripherals like SPI, I²S or GPIO. It
requires an input clock, and outputs a PDM stream of the same. This PDM stream is further
filtered and decimated for conversion into the PCM standard format for audio transmission.

In this scenario, microphone acquisition works in the following way:

 a precise clock signal is generated by a timer and provided to the microphones; the
DMA operates at a same frequency.

 A software demuxing step separates the signal from the two microphones and allows
further processing like PDM to PCM conversion.

You will find additional resource information regarding MEMS microphones and PDM to
PCM decimation in Section 6: "References".

By configuring analog switch (U18) through the firmware, you can acquire four external
microphones on the same GPIOs instead of the four available on the board. You can also
acquire additional external microphones, up to a maximum of eight, through the J9
connector.

In the firmware, audio-related components are collected in the application_audio.c file,
which uses the dedicated BSP layer steval_idi001v1_audio_in.c and the PDM to PCM
decimation library middleware.

To set the system up for four-microphone acquisition and two-channel streaming requires
the following steps, which you can trace in the application_audio.c file:

 Initialize acquisition peripherals: the function Init_Acquisition_Peripherals(…) initializes
the PDM to PCM middleware and sets up the required MCU peripherals with the
dedicated BSP function BSP_AUDIO_IN_Init(…).

 start acquisition using BSP_AUDIO_IN_Record(…).

STEVAL-IDI001V1 software, expansion for
STM32Cube

UM1986

10/28 DocID028648 Rev 1

The audio streaming via USB is always active; you can use software to record and edit
sounds.

2.6 STCmdP: ST command protocol

The section describes the bit-level message format and the higher level commands of the
communication protocol used in this application.

2.6.1 Data format

The serial protocol defines two layers:

 Layer 1 - the first lower layer

 Layer 2 - a second upper layer

The Layer 1 packet is defined as follows:

Table 1: Layer 1 packet

Type Encoded Payload EOF

Bytes N 1

Where:

 Encoded Payload: is the message exchanged by the protocol between the module
and a host. Its length can change but it is limited by the physical MTU (Maximum
Transmission Unit). The actual payload is encoded by a byte stuffing function
described elsewhere in this document, to avoid any EOF characters in the content.

 EOF (0xF0): byte representing the end of the packet. It has the value: 0xF0.

The Encoded Payload of Layer 1 must be processed by a function which performs
reverseByteStuffing, described elsewhere in this document, to obtain the Payload. The
resulting Payload is a Layer 2 packet with the following format:

Table 2: Layer 2 packet

Type
Destination

Address

Source

Address

Command

CMD
Payload CHK

Bytes 1 1 1 N 1

Where:

 Destination Address: symbolic address of the destination. It enables unicast
messages on a shared bus.

 Source Address: symbolic address of the source.

 Command: code representing the issued command. It specifies how the payload
should be interpreted.

 Payload: data which is interpreted with respect to the CMD field.

 CHK: the computed sum of all the bytes in the packet must be zero.

2.6.2 Process involved in sending/receiving packets

The following figure shows the packet send and receive processes. The two checksum and
byte stuffing functions and their respective reverse functions, ensure correct CMD and
corrresponding payload interpretation.

UM1986 STEVAL-IDI001V1 software, expansion for
STM32Cube

 DocID028648 Rev 1 11/28

Figure 4: Send and receive processes

2.6.3 Checksum Algorithm

The checksum algorithm ensures that the packet you handle contains the correct
information.

The algorithms needed to compute and to verify the checksum integrity are explained by
the following pseudo-code snippets.

ComputeandAddCHK

begin

uint_8 CHK = 0

for i=0:layer2length

CHK = CHK - layer2data(i)

end

layer2data(layer2length+1) = CHK

end

CheckandRemoveCHK

begin

uint_8 CHK = 0

for i=0:layer2length

CHK = CHK + layer2length

end

layer2length = layer2length - 1

STEVAL-IDI001V1 software, expansion for
STM32Cube

UM1986

12/28 DocID028648 Rev 1

return CHK == 0

end

2.6.4 Byte stuffing

Byte stuffing is a process that transforms a sequence of data bytes that may contain 'illegal'
or 'reserved' values into a potentially longer sequence with none of these values.

In our case, as the EOF character identifies the end of the packet, there must be no other
occurrence of this character in the packet.

For this reason the following special characters are defined:

 TMsg_EOF (0xF0): is the EOF of layer 1 packet

 TMsg_BS (0xF1): is the byte stuffing escape character

 TMsg_BS_EOF (0xF2): is the substitution for TMsg_EOF

The byte stuffing algorithm used in sending actions is defined as follows:

 Given a Layer 2 message, for each character:

 Substitute TMsg_BS with TMsg_BS followed by TMsg_BS (double the character).

0xF1 becomes 0xF1 0xF1.

 Substitute each TMsg_EOF with TMsg_BS followed by TMsg_BS_EOF. 0xF0

becomes 0xF1 0xF2.

As can be seen, the Layer 2 packet length may change in the process.

The reverse byte stuffing algorithm can be defined in the same way:

 Given a Layer 1 payload, for each character

 Substitute the expression (TMsg_BS followed by TMsg_BS) with a single

TMsg_BS. 0xF1 0xF1 becomes 0xF1.

 Substitute the expression (TMsg_BS followed by TMsg_BS_EOF) with TMsg_EOF.

0xF1 0xF2 becomes 0xF0.

2.6.5 Standard commands

A set of fundamental and standard commands are defined in this document. The protocol
can be extended in order to accommodate many more commands which are specifically
related to the target application.

The standard commands are summarized in the following table:

Table 3: Standard commands

Command
CMD

value
Meaning

CMD_Ping 0x01
This is the standard ping command, the device will
reply accordingly

CMD_Read_PressString 0x02
Requests the presentation string which contains basic
device information (name and version)

CMD_Reset 0x0F Requests a reboot of the device

CMD_Reply_Add 0x80

This value is added to the value of the CMD field to
form the command for the reply. E.g., 0x81 = reply to
the PING command

CMD_NACK 0x03
The requested command procedure did not end
correctly.

UM1986 STEVAL-IDI001V1 software, expansion for
STM32Cube

 DocID028648 Rev 1 13/28

This list specifies the value of the CMD field which can be inserted in the request packet
(from the host to the module). The module will reply by adding CMD_Reply_Add to the
value of CMD.

Note that the length of the packets is determined by a low level function using terminator
and escape special characters. For this reason, the real length of the packet may not equal
the message length. Moreover, the data contained in the Layer 2 payload is serialized
before being copied into a packet so that, using a function to deserialize them, the data is
independent of the architecture (big/little-endian).

The commands in Layer 2 format are explained here in more detail:

CMD_Ping: The packet is formed as shown below

Table 4: CMD_Ping

Type Destination address Source address Command

Length (Bytes) 1 1 1

Value XX YY CMD_Ping

The module will answer with the same packet format but the source and destination
addresses are obviously swapped and the command field will contain CMD_PING +
CMD_Reply_Add.

CMD_Read_PresString: The request packet is equal to CMD_PING where CMD is
substituted by CMD_Read_PresString.

The reply you will receive is:

Table 5: CMD_Reset

Type
Destinatio

n address
Source address Command Payload

Length (Bytes) 1 1 1 K

Value YY XX
CMD_Read_PresStrng

+ CMD_Reply_add

String of K

characters

CMD_Reset: the request packet is equal to CMD_PING where CMD is substituted by
CMD_Reset. The module will reboot and no ACK will be sent. The host can check the new
state of the module using other application-dependent commands.

2.6.6 CMD_Ping Example

In this example, we consider the PING command, how to form the request and its response
at "Layer 1" and "Layer 2" (see the general Serial Protocol document for more information
about layers).

Request

For the following hypotheitcal values:

 Sender Address = TMsg_EOF = 0xF0

 Destination Address = 0x42

The Layer 2 request packet is:

STEVAL-IDI001V1 software, expansion for
STM32Cube

UM1986

14/28 DocID028648 Rev 1

Table 6: Layer 2 packet

Type
Destinatio

n address
Source address Command CHK

Length (bytes) 1 1 1 1

Value 0x42 0xF0 CMD_Ping = 0x01 205 = 0xCD

After the bytestuffing algorithm, the "Layer 1" packet is:

0x42 TMsg_BS = 0xF1 TMsg_BS_EOF = 0xF2 0x01 0xCD TMsg_EOF =0xF0

Reply

The packet is received at "Layer 1". After reverse bytestuffing and checksum, the original
packet is parsed (at "Layer 2").

Upon a PING request, "Layer 2" will reply:

Table 7: Layer 1 packet

Type
Destinatio

n address
Source address Command CHK

Length (bytes) 1 1 1 1

Value 0xF0 0x42
CMD_PING +

CMD_Reply_Add = 0x81
77 = 0x4D

After the bytestuffing algorithm, the "Layer 1" packet is:

TMsg_BS = 0xF1 TMsg_BS_EOF = 0xF2 0x42 0x81 0x4D TMsg_EOF =0xF0

2.6.7 Commands available

The following table gives all the available commands used in the firmware example.

Table 8: Commands firmware

Type Command Code

Generic

CMD_Ping 0x01

CMD_Read_PresString 0x02

CMD_NACK 0x03

CMD_Start_Data_Streaming 0x08

CMD_Stop_Data_Streaming 0x09

CMD_Set_DateTime 0x0C

CMD_Get_DateTime 0x0D

CMD_Reset 0x0F

CMD_Reply_Add 0x80

Audio CMD_AudioModule_GetEnergydB 0x43

Proximity & Ambient light
CMD_BBx_Init 0x50

CMD_BB_ReadData 0x52

Environmental CMD_LPS25H_Init 0x60

UM1986 STEVAL-IDI001V1 software, expansion for
STM32Cube

 DocID028648 Rev 1 15/28

Type Command Code

CMD_LPS25H_Read 0x61

CMD_HTS221_Init 0x62

CMD_HTS221_Read 0x63

CMD_UVIS3_Init 0x64

CMD_UVIS3_Read 0x65

Inertial

CMD_LSM9DS1_Init 0x70

CMD_LSM9DS1_9AXES_Read 0x71

CMD_LSM9DS1_ACC_Read 0x73

CMD_LSM9DS1_GYR_Read 0x74

CMD_LSM9DS1_MAG_Read 0x75

PC Utility UM1986

16/28 DocID028648 Rev 1

3 PC Utility

3.1 Data logger example

The STEVAL-IDI001V1 software package includes a simple Qt project that shows how to
create a communication link between your PC and STEVAL-IDI001V1. This example is
provided in the source code and contains a library with all the available commands to
interact with the STEVA-IDI001V1.

The operational sequence is:

1. the Virtual COM Port indicated by the user is opened
2. an initialization message is sent to the STEVA-IDI001V1 for each sensor
3. raw data is acquired in a loop that runs until a button is pressed by the user.

Figure 5: Data logger example

3.2 Data logger demo

A demonstration program (binary only) is provided with the STEVAL-IDI001V1 package.

The aim of this software is to give an overview of all the sensors mounted on board.

Two different views are available:

 a graphics view that shows a plot for each measured quantity

 a log view that displays the acquired data with the corresponding timestamp

The incoming data can be saved in a text file in order to use it for sensor fusion algorithm
development. A screenshot of the application is shown in Figure 6: "Data logger demo".

UM1986 PC Utility

 DocID028648 Rev 1 17/28

Figure 6: Data logger demo

3.3 PC audio recording utility example: Audacity

This section describes the use of the Audacity® free, open source, cross-platform software
application for multiple channel audio recording and editing.

It is available for Windows®, Mac®, GNU/Linux® and other operating systems as a
freeware audio editing environment (http://audacity.sourceforge.net/?lang=en).

In windows 7, the released Audacity version is capable of recording up to 2 microphones;
the proprietary ASIO driver is usually the best way of making multi-channel recordings on
Windows, but Licensing restrictions prevent including ASIO support in released versions of
Audacity. However, it can be compiled with ASIO support for private, non-distributable use.
For additional information resources, please refer to Section 6: "References".

To start audio recording, first check the audio input device is STM32 AUDIO Streaming in
FS mode and then begin audio recording and subesequent playback using the respective
buttons.

PC Utility UM1986

18/28 DocID028648 Rev 1

Figure 7: Audacity for windows

UM1986 System setup guide

 DocID028648 Rev 1 19/28

4 System setup guide

4.1 Hardware description

This section describes the hardware components needed for developing sensor-based
applications.

4.1.1 STEVAL-IDI001V1

STEVAL-IDI001V1 is an evaluation board based on STM32F4 Microcontroller and a wide
range of ST sensors. With a small, 4x4 cm form factor, it represents an exemplary
integration of sensors and CPU for "sensor-hub like" applications.

The hardware is compatible with the STM32-Nucleo and X-NUCLEO expansion board,
thanks to the STEVAL-IDI001-Exp adapter.

The STEVAL-IDID001V1 board requires a separate probe in order to be programmed.
Either an ST-LINK/V2-1 debugger/programmer or a Nucleo that integrates it can be used
with an SWD cable adapter.

Figure 8: STEVAL-IDI001V1

Information about the STEVAL-IDI001V1 is available on www.st.com.

4.2 Software description

The following software components are requiredr to setup the suitable development
environment for creating applications for the STEVAL-IDI001V1:

 Firmware example: an expansion for STM32Cube dedicated to sensor application
development. The STEVAL-IDI001V1 firmware and related documentation is available
on st.com.

 ST-LINK/V2 USB driver available at ST-LINK driver.

 STM32 Virtual COM Port driver available at VCP driver (Optional).

 Development tool-chain and Compiler: The STM32Cube expansion software supports
the three following environments:

System setup guide UM1986

20/28 DocID028648 Rev 1

 IAR Embedded Workbench for ARM® (EWARM) toolchain + ST-Link

 RealView Microcontroller Development Kit (MDK-ARM) toolchain + ST-LINK

 Atollic TrueSTUDIO® for ARM® Pro + ST-LINK

4.3 Hardware and Software setup

This section describes the hardware and software setup procedures.

4.3.1 Hardware setup

The following hardware components are needed:

 One STEVAL-IDI001V1.

 One USB type A to Micro-B USB cable for power supply and to connect the STEVAL-
IDI001V1 to the PC.

4.3.2 Software setup

This section lists the minimum requirements to setup the SDK, run the sample testing
scenario based on the previous description and customize your applications.

Development Tool-chains and Compilers

Choose one of the Integrated Development Environments supported by the STM32Cube
expansion software and follow the system and setup details provided by the selected IDE
provider.

Recognition of the device as a Virtual COM Port and as a standard USB
microphone

The software package includes a composite Audio+VCP driver that allows the device be
recognized as a Virtual COM Port and as a standard USB microphone. Following firmware
download to MCU FLASH and connection of the STEVAL-IDI001V1 board to your PC via
USB cable, check the system manager to see if it has been recognized correctly, as
depicted in Figure 9: "STM32 microphone in system manager".

Figure 9: STM32 microphone in system manager

UM1986 System setup guide

 DocID028648 Rev 1 21/28

Finally, right click on the volume icon on the windows task bar (in the bottom right part of
the screen) and choose "recording device". Now select STM32 microphone and click on
"Properties". In the "advanced" tab there is a summary of the current device setup in terms
of sampling frequency and number of channels. Here, you should adjust the settings so
you can record and save audio (Figure 10: "Advanced configuration setup").

Figure 10: Advanced configuration setup

4.3.3 Data Logger demo setup Guide

Follow these steps to set up the Data Logger demo provided with the STEVAL-IDI001V1
software package:

 Connect the STEVA-IDI001V1 board to the PC via USB.

 Launch the STEVAL-IDI001V1_Datalog.exe executable file; the COM ports of
available ST devices will be listed as shown in Figure 11: "SW connection", select the
correct one and click "Open COM Port".

System setup guide UM1986

22/28 DocID028648 Rev 1

Figure 11: SW connection

 Set the sensor sampling interval (in ms) and choose the sensors that you want to read
data from. Press "Start" to commence data acquisition. (Figure 12: "SW sensor
configuration").

Figure 12: SW sensor configuration

 Select the "Log" checkbox to display the data log; save the acquired data in a text file
or clear the log content by pressing the corresponding "Save" and "Clear" buttons.
(Figure 13: "SW log view").

UM1986 System setup guide

 DocID028648 Rev 1 23/28

Figure 13: SW log view

 Select the "Plot" checkbox to display a graph for each selected sensor. You can attach
and detach all the graphs to and from the main window and select the x-axis range
(Figure 14: "SW plot view").

Figure 14: SW plot view

 Finally press the "Stop" button to arrest data acquisition, and "Close COM Port" button
close the Virtual COM Port.

4.3.4 SD card DataLog example

The STEVAL-IDI001V1 software package also includes an example of how to use a
microSD card for data storage. The firmware architecture of this example is similar to the
sample data log application previously described in Section 2.5: "Sample application
description".

In order to run this demo, insert the microSD card in the relevant connector on the
STEVAL-IDI001V1. When you power the board, it automatically detects the microSD card
and the red LED starts blinking.

System setup guide UM1986

24/28 DocID028648 Rev 1

Now press the user button to start the data log application (the red LED should turn off and
the green one should start blinking). Every second, the timestamp and a value for each
sensor are saved in a file called STEVAL_IDI001V1_Datalog_Nx.tsv where x is an
incremental ID.

Press the user button again to stop the application.

You can restart the microSD card DataLog application any time you want, a new file with a
different ID will be saved on the microSD card.

UM1986 Acronyms and Abbreviations

 DocID028648 Rev 1 25/28

5 Acronyms and Abbreviations
Table 9: List of acronyms

Acronym Description

PDM Pulse Density Modulation

PCM Pulse Code Modulation

USB Universal Serial Bus

SPI Serial Peripheral Interface

I²S Integrated Interchip Sound

I²C Inter-Integrated Circuit

BSP Board Support Package

HAL Hardware Abstraction Layer

IDE Integrated Development Environment

STCmdP ST Command Protocol

References UM1986

26/28 DocID028648 Rev 1

6 References

1. LSM9DS1 MEMS IMU 9axes inertial module, data. LSM9DS1 datasheet
2. STM32F439II High Performances MCU ARM®Cortex™-M4F. STM32F43911
3. LPS25HB 260-1260 hPa digital output barometer, data sheet. LPS25HB datasheet
4. HTS221 Capacitive digital sensor for relative humidity and temperature, datasheet.

HTS221 datasheet
5. UVIS25 Digital UV Index, data sheet. UVIS25 datasheet
6. VL6180x Proximity and ambient light module, data sheet. VL6180x datasheet
7. MP34DT01 MEMS audio sensor omnidirectional digital microphone, data sheet.

MP34DT01 datasheet
8. PDM audio software decoding on STM32 microcontrollers, Application note AN3998.

PDM Application Note
9. Audacity ASIO Audio interface wiki. Audacity

UM1986 Revision history

 DocID028648 Rev 1 27/28

7 Revision history
Table 10: Document revision history

Date Revision Changes

24-Nov-2015 1 Initial release.

 UM1986

28/28 DocID028648 Rev 1

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications , and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST
products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the
design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics – All rights reserved

