Ruggedized Hall effect joysticks

Distinctive features and specifications

- Rugged finger positioning control
- Available with CANbus J1939
- Available with USB 1.1 HID compliant interface
- 1, 2 and 3 axis configurations
- 10 million life cycles
- Sealing up to IP68

MECHANICAL (FOR X, Y AXIS)

- Break Out Force: 1.8N (0.4lbf)Operating Force: 3.5N (0.75lbf)
- Maximum Applied Force: 450N (100lbf)
- Mechanical Angle of Movement: 40°
- Expected Life: 10 million cycles
- Material: Glass filled nylon
- Lever Action: Spring centering

MECHANICAL (FOR Z AXIS)

- Break Out Torque: 0.09N·m (0.80lbf·in)
 Operating Torque: 0.121N·m (1.07lbf·in)
- Maximum Allowable Torque: 0.150N·m (1.33lbf·in)
- Hand Mechanical Angle: 60°
- Handle Action: Spring centering
- Expected Life: 10 million cycles

CANbus OUTPUT VERSION

- Supply Voltage Range: 6V to 30V
- CANbus Version: J1939

 NOTES: All values are no
 - All values are nominal.Exact specifications may be subject to configuration.
 - Contact Technical Support for the performance of your specific configuration.
 - * Excludes some handle options.

ENVIRONMENTAL

- Operating Temperature: -25°C to 70°C (-13°F to 158°F)
- Storage Temperature: -40°C to 70°C (-40°F to 158°F)
- Sealing (IP): IP65 to IP68*
- EMC Immunity Level (V/M): IEC 61000-4-3: 2006
- EMC Emissions Level: IEC 61000-4-8: 1993/A1: 2000
- ESD: IEC 61000-4-2: 2008
- Vibration Crash (non operational):
 - IAW MIL-STD-810F Method 516.5 Procedure V, Table 516.5-8 SRS (75G)
- Vibration Shock (non operational):
 In the state of 514.5.
- IAW MIL-STD-810F, Method 516.5, Procedure 1, 40G peak sine wave pulse with 11ms duration
- Vibration Shock (operational): IAW MIL-STD-810F, Method 516.5, Procedure, 20G peak half sine wave pulse with 11ms duration

ELECTRICAL

- Sensor: Hall effect
- Supply Voltage Operating: 5.00VDC
- Reverse Polarity Max: -14.5VDC
- Overvoltage Max: 18VDC
- Output Voltage: See options
- Output Impedance: 6Ω
- Current Consumption Max: 10mA per axis
- Return to Center Voltage (No Load): ±200mV

Note: The company reserves the right to change specifications without notice

Ruggedized Hall effect joysticks

Overview

Ruggedized Hall effect joysticks

Overview

Note: The company reserves the right to change specifications without notice.

Ruggedized Hall effect joysticks

Overview

NOTES:

- 1. Dimensions are in mm/(inch).
- 2. Axis orientation:

DEFAULT WIRE COLOR CODE*				
COLOR	FUNCTION	AWG		
RED	Vcc or Vdd			
BLACK	Ground			
BLUE	X Axis	28		
YELLOW	Y Axis			
GREEN	Z Axis			
WHITE	Switch Common (optional)			
ORANGE	Switch 1 (optional)	22		
VIOLET	Switch 2 (optional)			

NOTE: * Starting from the strain relief, the leads are 178mm (7in) long, 3.18mm (0.125in) stripped.

Ruggedized Hall effect joysticks

Overview

- Panel
- Gasket =
$$\frac{0.50}{(0.02)}$$

NOTES:

- For DROP-IN mounting, the panel thickness can be 1.17mm to 3.17mm (0.046in to 0.125in).
- For REAR MOUNT the maximum panel thickness is 1.6mm (0.063in).
- A panel thickness of 1/16" (1.6mm/0.063in) was considered for all the below-panel depth values.
- The below-panel depth is extended by 7.11mm (0.28in) with the Mouse Emulation, USB, CANbus, and Dual Sensor options.

NOTE:

Dimensions are in mm/(inch).

Note: The company reserves the right to change specifications without notice

Ruggedized Hall effect joysticks

Overview

Ruggedized Hall effect joysticks

Overview

ADDITIONAL OUTPUT OPTIONS

CANbus J1939

APEM's HT CANbus joysticks conform to the J1939 serial bus specification used for communications between electronic control units and vehicle components.

FΙ	FCTRI	$C\Delta I$	SPECI	FICAT	IONS

Supply Voltage: Supply Current: 6VDC to 35 VDC

15mA min, +5mA per LED, +10mA per axis

WIRING SPECIFICATION

Red Wire: Supply Power Ground CAN high data Black Wire: Green Wire: White Wire: CAN low data Identifier Select LSB Identifier Select MSB Blue Wire: Orange Wire:

ENVIRONMENTAL

-25°C to +70°C (-13°F to +158°F) Operating temperature: Storage temperature: -40° C to $+70^{\circ}$ C (-40°F to $+158^{\circ}$ F)

CONNECTOR OPTIONS:

Cable assembly with Deutsch DT04 style plugs

CANbus CONFIGURATION:

• Contact Technical Support for assistance

CANopen

• Contact Technical Support for assistance with CANopen configuration.

Note: The company reserves the right to change specifications without notice.

Ruggedized Hall effect joysticks

Overview

USB

USB

Featuring USB 1.1 HID compliant interface, APEM's USB joysticks are recognized as standard HID "game controller" devices. Adhering to the HID specification, APEM's USB joysticks are plug-and-play with most versions of Windows and Linux. Joystick button and axes assignments are dependent upon the controlled application.

FEATURES

- USB 1.1 HID compliant "game controller" device
- · Easy to install and operate
- Functions determined by controlled application
- Standard Male Type A Connector

SUPPLIED WIRING

USB: USB Male Type A Connector with overmolded cable (Optional ruggedized military connectors are available.)

CURSOR EMULATION

The Cursor Emulation option converts multi-axis joystick output into a mouse, trackball, or cursor control device. The joystick's internal microprocessor converts absolute axis position into a cursor velocity, which is translated as a relative trackball or mouse position.

APPLICATIONS

The Joyball option is ideal for vehicle applications subjected to dirt and high vibration which makes operating a traditional cursor control device difficult. The Cursor Emulation option is widely used in shipboard and military applications.

FEATURES

- HID compliant "pointing device"
- Plug-and-play with USB option
- Ideal for marine GPS and navigation
- Environmental sealing up to IP68*

SUPPLIED WIRING

USB: USB Male Type A Connector with overmolded cable

I/O COMPLEMENT/ USER SPECIFIED PARAMETERS:

• USB 2 pushbuttons 2 or 3 axis (X, Y, and Z "scroll")

NOTE: *Excludes some handle options.