
WFH Series

Aluminum Housed Wirewound Power

Туре	Power Rating* (watts)	Resistance Range (Ω)	Dim A	ension (n B	nm) L	
WFH90	90	$0.22\Omega - 6.8K$	70	39.7	53	Т
WFH160	160	0.47Ω-18K	140	80	123	
WFH230	230	0.82Ω-27K	210	2x 80	193	
WFH330	330	1Ω - 39K	280	2x 100	263	
*at 40°C base plate temperature						

DESIGNING

The following equations are applied in the dimensioning of the resistors at stationary load. If more information is required please consult Ohmite. It is assumed that the air around the resistors is stationary (worst case). **See ohmite.com for more examples.**

1. WFH is mounted on a heat sink:

A. The thermal resistance R_{TH} of the heat sink is known,

 $T = W_{MAX} x (R_{TH4} + R_{TH})$

Check that:

 $T_{MAX} = W_{MAX} x (R_{TH} + R_{TH3} + R_{TH1}) + T_{AMB} < 220$ °C

B. The Temperature of the Heat Sink is known,

 $T = W_{MAX} x R_{TH4} + T_{H}$

Check that:

 $T_{MAX} = W_{MAX} x (R_{TH1} + R_{TH3}) + T_{H} < 220^{\circ}C$

2. WFH is mounted without a heat sink:

Check that:

 $T_{MAX} = W_{MAX} x (R_{TH1} + R_{TH2}) + T_{AMB} < 220^{\circ}C$

Where:

W_{MAX} = Maximum required load in resistor

 T_{MAX} = Maximum hot spot temperature reguested in resistor (T_{MAX}

<220°C) The lower T_{MAX} the higher reliability and lifetime.

T_{AMB} = Ambient temperature

R_{TH} = Thermal resistance. Refer to table Thermal resistances

T_H = Heat sink temperature (chassis).

T = Temperature on top of the Aluminum profile.

Ohmite's new flat core winding technology allows for wire-wound heatsinkable resistors affording a very low profile, and superior thermal transfer characteristics when compared to conventional aluminum housed wirewound resistors. Close mounting of heat sensitive components is possible due to only a slight rise of the temperature on the aluminum profile.

No heat sink compound is required because of large mounting surface.

FEATURES

- Solder, wire and "Fast-On" Termination
- More resistors in one profile possible
- Custom wire lengths available

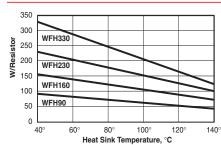
SPECIFICATIONS

Power rating: 90W-330W Resistance tolerance: ±5%,

±10%

Temperature Coefficients: Normal: 50ppm - 150ppm Low ohmic values: 400ppm Dielectric strength: 2500 VAC

peak

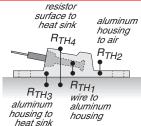

Working voltage: 1200 VAC Test voltage: 6000 VAC Lead wire: (wire terminal version only): XLPE, 600V, 125C, 18

AWG stranded

Insulation: Silicone Rubber & Mica. The Silicone is UL-recognised (UL 94 HB) to a working temperature of 220°C. Temperatures of up to 300°C can be endured for shorter periods. This may however cause an expansion of the silicone rubber with a possibility of reducing the

dielectric strength.

POWER DISSIPATION



This graph shows the maximum wattage rating for each possible resistor of standard size corresponding to the heat sink temperature. It is assumed that all resistors are equally loaded.

THERMAL RESISTANCES

Thermal Resistance (°C/W) between different measuring points

	WFH90	WFH160	WFH230	WFH330
R _{TH1}	2	1	0.75	0.5
R_{TH_2}	6.8	3.9	2.75	2
R_{TH_3}	0.1	0.05	0.03	0.02
R _{TH4}	0.3	0.17	0.1	0.085

ORDERING INFORMATION

THIS PRODUCT IS DESIGNED FOR USE WITH PROPER HEATSINKING.

Maximum base plate temperature of the resistor must be monitored and kept within specified limits to establish the power rating. Best technique is to attach a thermocouple to the side of the base plate of the resistor. Temperature of plastic housing or heat sink cannot be used to establish rating of the resistor.

STANDARD PART NUMBERS FOR WFH SERIES

WFH90L10RKE WFH90L25RJE WFH90L50RJE WFH90L100JE WFH90L470JE WFH90L750JE WFH90L1K0JE	WFH160LR47KE WFH160L1R0KE WFH160L2R0KE WFH160L10RKE WFH160L27RJE WFH160L50RJE WFH160L75RJE WFH160L10RJE	WFH160L5K0JE WFH160L10KJE WFH230L1R0KE WFH230L2R0KE WFH230L5R0KE WFH230L10RKE WFH230L27RJE	WFH230L100JE WFH230L150JE WFH230L250JE WFH230L1K0JE WFH230L1K5JE WFH230L2K5JE WFH330L1R0KE WFH330L2R0KE	WFH330L50RJE WFH330L75RJE WFH330L100JE WFH330L150JE WFH330L250JE WFH330L1K0JE WFH330L5K0JE WFH330L10KJE
WFH90L2K7JE		WFH230L27RJE WFH230L50RJE WFH230L75RJE	WFH330L2R0KE WFH330L10RKE WFH330L27RJE	WFH330L10KJE
WITIOULOROUL	WITITOOLZOOOL	WITIZOOLIONOL	WITHOUGEZTHOL	