3.3V/2.5V PHASE-LOCK LOOP CLOCK DRIVER ZERO DELAY BUFFER

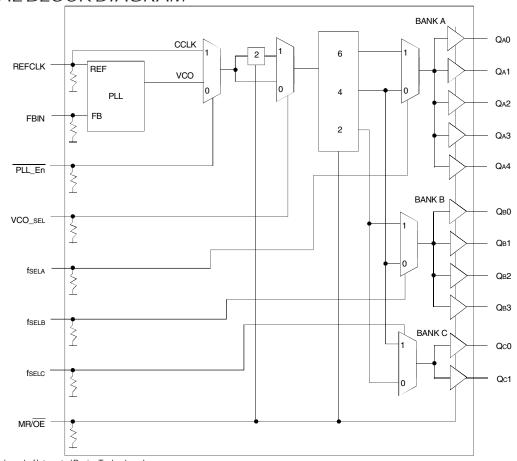
PRODUCT DISCONTINUATION NOTICE - LAST TIME BUY EXPIRES OCT 28, 2014

FEATURES:

- Phase-lock loop clock distribution for high performance clock tree applications
- Output enable bank control
- External feedback (FBIN) pin is used to synchronize the outputs to the clock input signal
- · No external RC network required for PLL loop stability
- Operates at 3.3V/2.5V Vcc
- · Spread Spectrum Compatible
- Operating frequency up to 200MHz
- Compatible with Motorola MPC9352
- · Available in 32-pin TQFP package
- Use replacement part: 87952AYILF

DESCRIPTION:

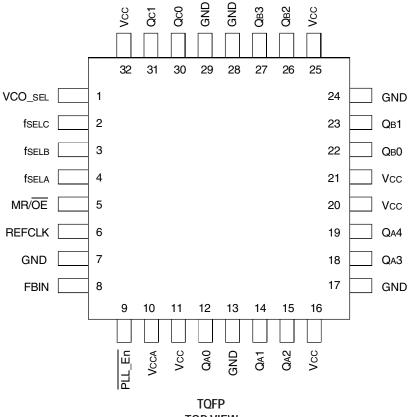
The 5V9352 is a low-skew, low-jitter, phase-lock loop (PLL) clock driver targeted for high performance clock tree applications. It uses a PLL to precisely align, in both frequency and phase. The 5V9352 operates at 2.5V and 3.3V.


FUNCTIONAL BLOCK DIAGRAM

The 5V9352 features three banks of individually configurable outputs. The banks are configured with five, four, and two outputs. The internal divide circuitry allows for output frequency ratios of 1:1, 2:1, 3:1, and 3:2:1. The output frequency relationship is controlled by the fSEL frequency control pins. The fSEL pins, as well as other inputs, are LVCMOS/LVTTL compatible inputs

Unlike many products containing PLLs, the 5V9352 does not require external RC networks. The loop filter for the PLL is included on-chip, minimizing component count, board space, and cost.

Because it is based on PLL circuitry, the 5V9352 requires a stabilization time to achieve phase lock of the feedback signal to the reference signal. This stabilization time is required, following power up and application of a fixed-frequency, fixed-phase signal at REFCLK, as well as following any changes to the PLL reference or feedback signals. The PLL can be bypassed for test purposes by setting the $\overline{\text{PLL}_{EN}}$ to high.


The 5V9352 is available in Industrial temperature range (-40°C to +85°C).

1

The IDT logo is a registered trademark of Integrated Device Technology, Inc. INDUSTRIAL TEMPERATURE RANGE

PINCONFIGURATION

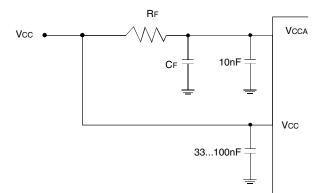
TOP VIEW

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Symbol Rating		Unit
Vcc	Supply Voltage Range	-0.3 to +3.6	V
Vi	Input Voltage Range	-0.3 to VCC+0.3	V
lin	Input Current	±20	mA
Ιουτ	DC Output Current	±50	mA
Tstg	Storage Temperature Range	-65 to +125	°C

NOTE:

1. Stresses beyond those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. These are stress rating only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolutemaximum-rated conditions for extended periods may affect device reliability.


GENERAL SPECIFICATIONS

Symbol	Description	Min.	Тур.	Max.	Unit
Vtt	Output Termination Voltage		Vcc/2		V
HBM	ESD Protection (human body model)	2000			V
LU	Latch-Up Immunity	200			mA

CAPACITANCE

Parameter	Description	Min.	Тур.	Max.	Unit
Cin	Input Capacitance	_	4	_	pF
Cpd	Power Dissipation Capacitance	_	10		pF

LOGIC DIAGRAM^(1,2)

NOTES:

- 1. IDT5V9352 requires an external RC filter for the analog power supply pin Vcca.
- 2. For Vcc = 2.5V, RF = 9-10 Ω , CF = 22 μ F.
- For Vcc = 3.3V, RF = $5-15\Omega$, CF = 22μ F.

IDT5V9352 3.3V/2.5V PHASE-LOCK LOOP CLOCK DRIVER ZERO DELAY BUFFER

INDUSTRIAL TEMPERATURE RANGE

FUNCTION TABLES

fsela	Qan	f SELB	QBN	f SELC	Qcn
0	÷4	0	÷4	0	÷2
1	÷6	1	÷2	1	÷4

Control Pin	Logic 0	Logic 1
VCO_SEL	fVCO	fVCO / 2
MR/OE	Output Enable	Outputs disable (high-impedance state) and reset of the device.
PLL_En	Enable PLL	Disable PLL

NOTE:

1. IDT5V9352 requires reset at power up and after any loss of PLL lock. Length of reset pulse should be greater than two REF CLK cycles (REFCLK).

PINDESCRIPTION

Tern	ninal		
Name	No.	Туре	Description
REFCLK	6	I	Reference clock input
FBIN	8	I	Feedback input.
VCCA	10	PWR	Analog power supply
GND	7, 13, 17, 24,	Ground	Negative power supply
	28, 29		
VCO_SEL	1	I	Allows for the choice of two VCO ranges to optimize PLL stability and jitter performance
MR/OE	5	I	Allows the user to force the outputs into HIGH impedence for board level test
QA (0:4)	12, 14, 15,		
	18, 19		
QB (0:3)	22, 23, 26, 27	0	Clock outputs. These outputs provide low skew copies of REFCLK or can be at different frequencies than REFCLK.
QC (0:1)	30, 31		
Vcc	11, 16, 20, 21,	PWR	Positive power supply for I/O and core
	25, 32		
PLL_EN	9		PLL enable input. When set LOW, PLL is enabled. When set HIGH, PLL is disabled.
fsel(C:A)	2, 3, 4	I	Frequency control pin

DC ELECTRICAL CHARACTERISTICS

TA = -40° C to $+85^{\circ}$ C, VCC = 3.3V $\pm 5\%$

Parameter	Description	Test Conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
Vih	Input HIGH Level		2		VCC + 0.3	V
Vil	Input LOW Level				0.8	V
Vон	HIGH Level Output Voltage	Iон = -24mA	2.4			V
Vol	LOW Level Output Voltage	Iol = 12mA			0.3	V
		Iol = 24mA			0.55	
Zout	Output Impedance			14 - 17		Ω
li	Input Current ⁽²⁾	VI = VCC or GND			±200	μA
Icc	Maximum Quiescent Supply Current ⁽³⁾	All Vcc pins			1	mA
ICCA	PLL Supply Current	Vccapin		3	5	mA

NOTES:

1. For conditions shown as Min. or Max., use the appropriate value specified under recommended operating conditions.

2. Inputs have pull-down resistors affecting the input current.

^{3.} Icc is the DC current consumption of the device with all outputs open in high-impedance state and the inputs in its default state or open.

INPUT TIMING REQUIREMENTS

TA = -40° C to $+85^{\circ}$ C, VCC = 3.3V $\pm 5\%$

Symbol	Description	Description		Max.	Unit
		÷4 feedback	50	100	
		÷6 feedback	33.3	66.6	
REF	Reference CLK input in PLL mode ⁽¹⁾	÷8 feedback	25	50	MHz
		÷12feedback	16.67	33.3	
	Reference CLK input in PLL bypass mode ⁽²⁾			250	
dн	Input clock duty cycle		25	75	%
tR, tF	Maximum input rise and fall times, 0.8V to 2V		—	1	ns

NOTES:

1. PLL mode requires $\overline{PLL_EN} = 0$ to enable the PLL and zero delay operation.

2. In PLL bypass mode, the IDT5V9352 divides the input reference clock.

$ACELECTRICAL CHARACTERISTICS^{(1)}$

TA = -40° C to $+85^{\circ}$ C, VCC = $3.3V \pm 5\%$

Symbol	Characteristic	Test Conditions	Min.	Тур.	Max.	Unit
tr, tr	Output Rise/Fall Time	0.55V to 2.4V	0.1		1	ns
		All Outputs, any frequency			200	
tsk(0)	Output to Output Skew	within Q _A output bank			200	ps
		within QB output bank			100	
		within Qc output bank			100	
fvco	PLL VCO Lock Range ⁽²⁾		200		400	MHz
		÷2output	100		200	
		÷4 output	50		100	Î
f MAX	Maximum Output Frequency	÷6output	33.3		66.6	MHz
		÷8output	25		50	1
		÷12 output	16.67		33.3	1
tPW	Output Duty Cycle		47	50	53	%
tPD	REFCLK to FBIN Delay	fref < 40MHz	-200		+150	ps
	PLLLocked	fref > 40MHz, PLL locked	-50		+150	
t PLZ	Output Disable Time				8	ns
t PHZ	MR/OE (LOW-HIGH) to any Q					
tPZL	Output Enable Time				10	ns
t PZH	MR/OE (HIGH-LOW) to any Q					
		Outputfrequencies mixed			400	
tı	Cycle-to-Cycle Jitter	Outputs in any +4 and +6 combination			250	ps
		All outputs same frequency			100	
		Output frequencies mixed			200	
U(PER)	Period Jitter	Outputs in any ÷4 and ÷6 combination			150	ps
		All outputs same frequency			75	
		\div 4 feedback divider RMS (1 σ)		15		
tJ(φ)	I/O Phase Jitter	\div 6 feedback divider RMS (1 σ)		20		ps
. [,		÷8 feedback divider RMS (10)		18-20		
		\div 12 feedback divider RMS (1 σ)		25		
		÷4feedback		3 - 10		
BW	PLL Closed Loop Bandwidth	÷6feedback		1.5 - 6		– MHz
		÷8feedback		1 - 3.5		
		÷12feedback		0.5 - 2		
t LOCK	Maximum PLL Lock Time				10	ms

NOTES:

1. AC characteristics apply for parallel output termination of 50 Ω to VTT.

2. The input frequency on CCLK must match the VCO frequency range divided by the feedback divide ratio FB: freq. = fvco + FB.

DC ELECTRICAL CHARACTERISTICS

TA = -40° C to $+85^{\circ}$ C, VCC = 2.5V $\pm 5\%$

Parameter	Description	Test Conditions	Min.	Тур. ⁽¹⁾	Max.	Unit
Vih	Input HIGH Level	LVCMOS	1.7		VCC + 0.3	V
Vil	Input LOW Level	LVCMOS	-0.3		0.7	V
Vон	HIGH Level Output Voltage	Іон = –15mA	1.8			V
Vol	LOW Level Output Voltage	Iol = 15mA			0.6	V
Ζουτ	Output Impedance			17 - 20		Ω
lı ⁽²⁾	InputCurrent	VI = VCC or GND			±200	μA
Icc ⁽³⁾	Maximum Quiescent Supply Current				1	mA
ICCA	PLL Supply Current			2	5	mA

NOTES:

1. For conditions shown as Min. or Max., use the appropriate value specified under recommended operating conditions.

2. Inputs have pull-down resistors affecting the input current.

3. Icc is the DC current consumption of the device with all outputs open in High-Impedance state and the inputs in its default state (or open).

INPUT TIMING REQUIREMENTS

TA = -40° C to $+85^{\circ}$ C, VCC = $2.5V \pm 5\%$

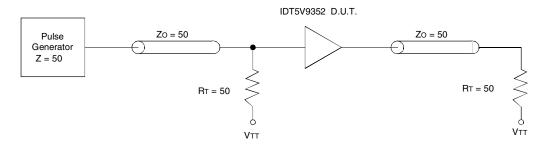
Symbol	Description		Min.	Max.	Unit
		÷4 feedback	50	100	
REF	Reference CLK input ⁽¹⁾	÷6 feedback	33.3	66.6	MHz
		÷8 feedback	25	50	
		÷12feedback	16.67	33.3	
	Reference CLK input in PLL bypass mode ⁽²⁾			250	
dн	Input clock duty cycle		25	75	%
tR, tF	Maximum input rise and fall times, 0.8V to 2V			1	ns

NOTES:

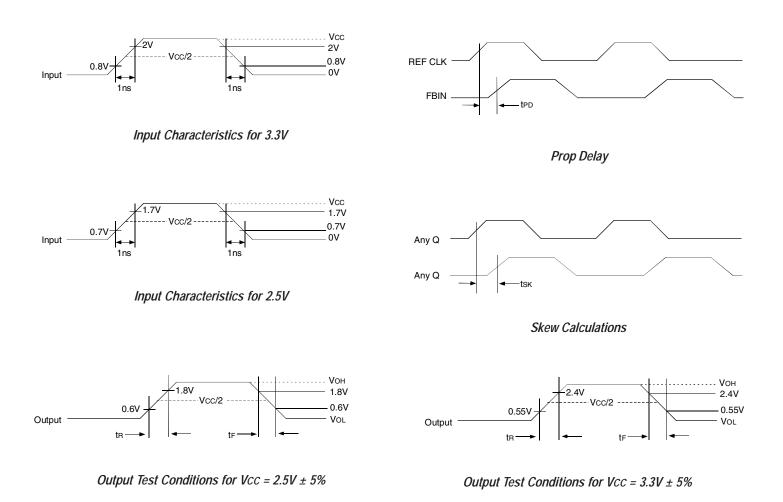
1. Maximum and minimum input reference is limited by the VCO clock range and the feedback divider.

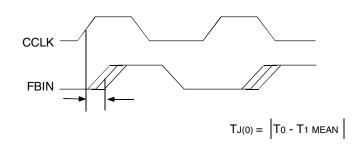
2. In PLL bypass mode, the 5V9352 divides the input reference clock.

$ACELECTRICAL CHARACTERISTICS^{(1)}$

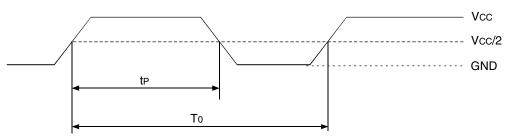

TA = $-40^\circ C$ to $+85^\circ C$, VCC = $2.5V\pm5\%$

Symbol	Characteristic	Test Conditions	Min.	Тур.	Max.	Unit	
tR, tF	Output Rise/Fall Time	0.6V to 1.8V	0.1		1	ns	
			All Outputs, any frequency			200	
tsk(0)	Output to Output Skew	within Q _A output bank			200	ps	
		within QB output bank			100		
		within Qc output bank			100	1	
fvco	PLL VCO Lock Range		200		400	MHz	
		÷2output	100		200		
		÷4 output	50		100		
fMAX	Maximum Output Frequency	÷6 output	33.3		66.6	MHz	
		÷8output	25		50		
		÷12 output	16.67		33.3		
tPW	Output Duty Cycle		47	50	53	%	
tPD	REFCLK to FBIN Delay	fref < 40MHz	-200		+150	ps	
	PLLLocked	fref > 40MHz	-50		+150		
tPLZ	Output Disable Time				8	ns	
t PHZ	MR/OE (LOW-HIGH) to any Q						
tPZL	Output Enable Time				10	ns	
t PZH	MR/OE (HIGH-LOW) to any Q						
		Output frequencies mixed			400		
tı	Cycle-to-Cycle Jitter	Outputs in any ÷4 and ÷6 combination			250	ps	
		All outputs same frequency			100		
		Output frequencies mixed			200		
U(PER)	Period Jitter	Outputs in any ÷4 and ÷6 combination			150	ps	
		All outputs same frequency			75		
		\div 4 feedback divider RMS (1 σ)		15			
t)(φ)	I/O Phase Jitter	\div 6 feedback divider RMS (1 σ)		20		ps	
		\div 8 feedback divider RMS (1 σ)		18-20			
		\div 12 feedback divider RMS (1 σ)		25			
		÷4feedback		1 - 8			
BW	PLL Closed Loop Bandwidth	÷6feedback		0.7 - 3		MHz	
		÷8feedback		0.5 - 2.5			
		÷12feedback		0.4 - 1			
t LOCK	Maximum PLL Lock Time				10	ms	

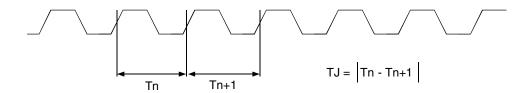

NOTE:

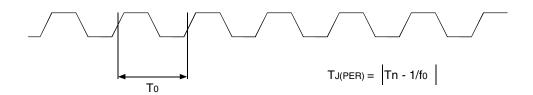

1. AC characteristics apply for parallel output termination of 50Ω to $V\pi.$

TEST CIRCUITS AND WAVEFORMS



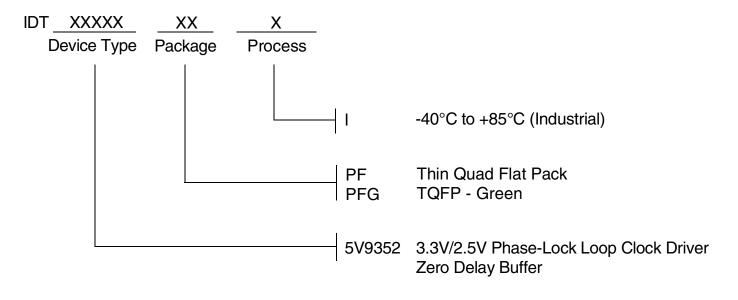
AC Test Reference for Vcc = 2.5V and Vcc = 3.3V





 $tPW = tP/T_0 \times 100\%$

Output Duty Cycle



Cycle-to-Cycle Jitter

Period Jitter

ORDERING INFORMATION

REVISION HISTORY

Rev	Table	Page	Discription of Change	Date
А		1	NRND - Not Recommended for New Designs	5/20/13
A		1	PDN - Product Discontinuation Notice - Last Time Buy Expires October 28, 2014 - PDN# CQ-13-02	12/19/13

We've Got Your Timing Solution.

6024 Silver Creek Valley Road San Jose, CA 95138

Sales 800-345-7015 (inside USA) +408-284-8200 (outside USA) Fax: 408-284-2775 www.IDT.com/go/contactIDT Tech Support netcom@idt.com +480-763-2056

DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT's sole discretion. All information in this document, including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.

IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.

Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third party owners.

Copyright 2013. All rights reserved.