FAIRCHILD

SEMICONDUCTOR TM

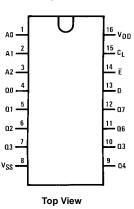
CD4724BC 8-Bit Addressable Latch

General Description

The CD4724BC is an 8-bit addressable latch with three address inputs (A0–A2), an active low enable input (\overline{E}), active high clear input (C_L), a data input (D) and eight outputs (Q0–Q7).

Data is entered into a particular bit in the latch when that is addressed by the address inputs and the enable (\overline{E}) is LOW. Data entry is inhibited when enable (\overline{E}) is HIGH.

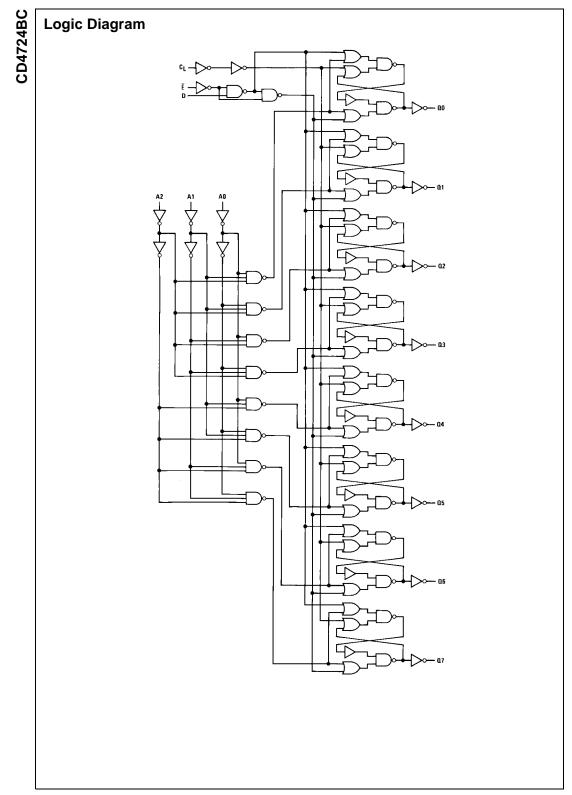
When clear (C_L) and enable (\overline{E}) are HIGH, all outputs are LOW. When clear (C_L) is HIGH and enable (\overline{E}) is LOW, the channel demultiplexing occurs. The bit that is addressed has an active output which follows the data input while all unaddressed bits are held LOW. When operating in the addressable latch mode ($\overline{E} = C_L = LOW$), changing more than one bit of the address could impose a transient wrong address. Therefore, this should only be done while in the memory mode ($\overline{E} = HIGH, C_L = LOW$).


Features

- Wide supply voltage range: 3.0V to 15V
- High noise immunity: 0.45 V_{DD} (typ.)
- Low power TTL compatibility:
- fan out of 2 driving 74L or 1 driving 74LS Serial to parallel capability
- Storage register capability
- Random (addressable) data entry
- Active high demultiplexing capability
- Common active high clear

Ordering Code:

Order Number	Package Number	Package Description
CD4724BCM	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
CD4724BCN N16E 16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide		16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.		


Connection Diagram

Truth Table

	Mode Selection					
μ	C_L	Addressed	Unaddressed	Mode		
		Latch	Latch			
L	L	Follows Data	Holds Previous Data	Addressable Latch		
Н	L	Hold Previous Data	Holds Previous Data	Memory		
L	н	Follows Data	Reset to "0"	Demultiplexer		
н	н	Reset to "0"	Reset to "0"	Clear		

© 2002 Fairchild Semiconductor Corporation DS006003

Absolute Maximum Ratings(Note 1)

(Note 2)

e 1)	Recommended Operating
	Conditions (Note 2)

DC Supply Voltage (V _{DD}) Input Voltage (V _{IN}) Storage Temperature (T _S)	-0.5V to +18 V _{DC} -0.5V to V _{DD} +0.5 V _{DC} -65°C to +150°C
Power Dissipation (P _D)	
Dual-In-Line	700 mW
Small Outline	500 mW
Lead Temperature (T _L)	
(Soldering, 10 seconds)	260°C

DC Electrical Characteristics (Note 2)

DC Supply Voltage (V_{DD})

Input Voltage (V_{IN})

3.0V to 15 $V_{\rm DC}$ 0V to $V_{\rm DD}$ $V_{\rm DC}$

Note 1: Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed; they are not meant to imply that the devices should be operated at these limits. The tables of "Recommended Operating Conditions" and Electrical Characteristics" provide con-

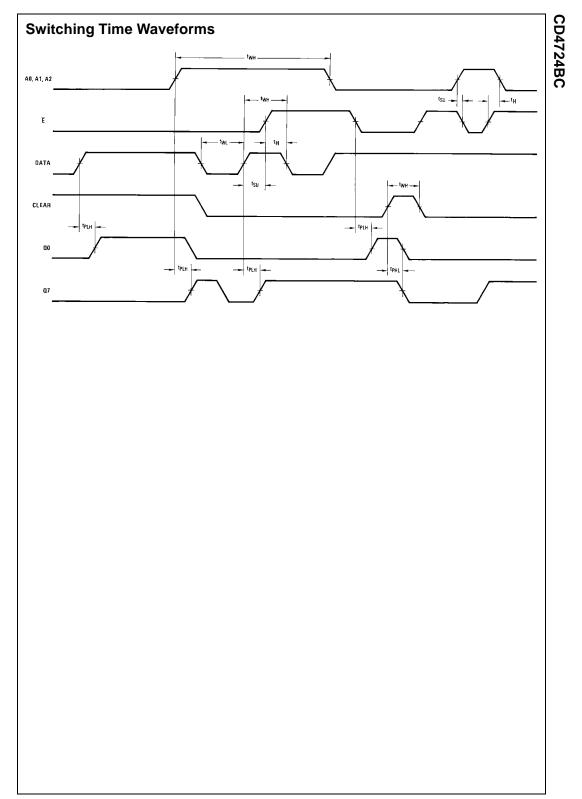
Note 2: $V_{SS} = 0V$ unless otherwise specified.

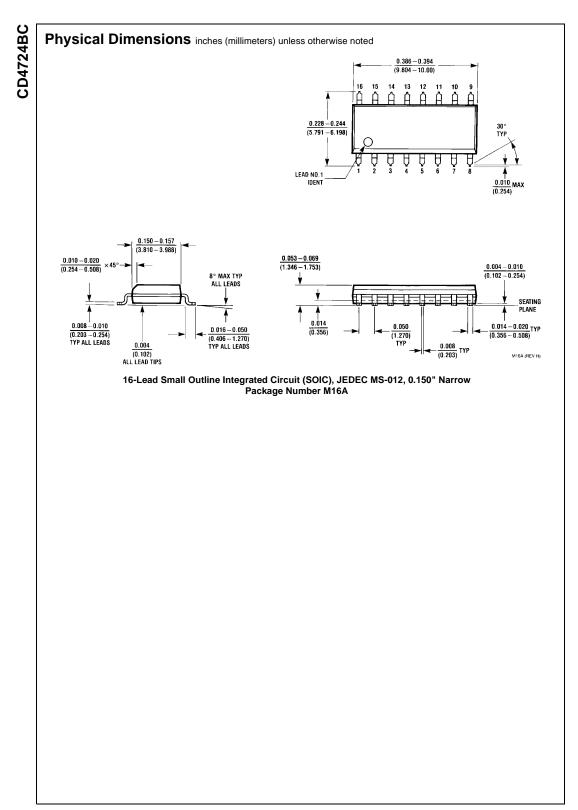
ditions for actual device operation.

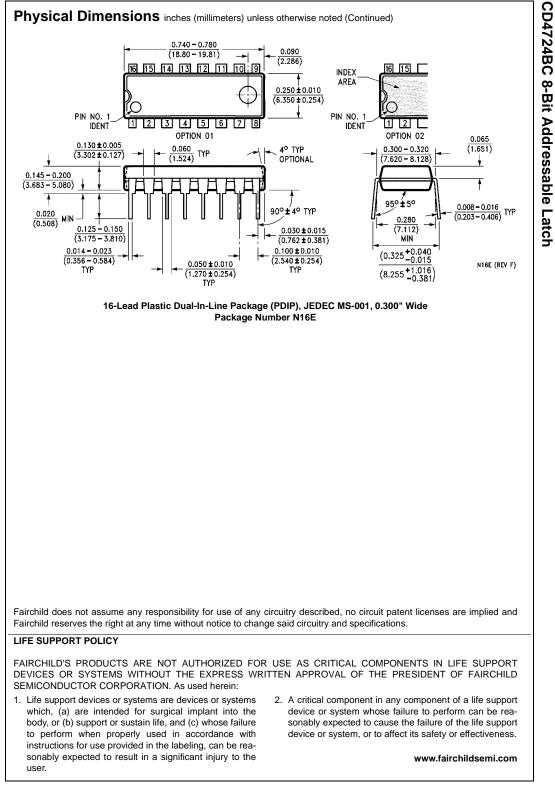
-55°C +25°C +125°C Symbol Parameter Conditions Units Min Max Min Max Min Тур Max $V_{DD} = 5V$ I_{DD} Quiescent Device 5 0.02 5 150 $V_{DD} = 10V$ Current 10 0.02 10 300 μΑ $V_{DD} = 15V$ 20 0.02 20 600 VOL LOW Level |I_O| ≤ 1 μA $V_{DD} = 5V$ Output Voltage 0.05 0 0.05 0.05 $V_{DD} = 10V$ 0.05 0 0.05 0.05 V $V_{DD} = 15V$ 0.05 0 0.05 0.05 HIGH Level |I_O| ≤ 1 μA V_{он} Output Voltage $V_{DD} = 5V$ 4 95 4 95 5.0 4 95 $V_{DD} = 10V$ 9.95 v 9.95 9.95 10 V_{DD} = 15V 14.95 14.95 15 14.95 $V_{DD} = 5V, V_{O} = 0.5V \text{ or } 4.5V$ VIL LOW Level 1.5 2.25 1.5 1.5 Input Voltage $V_{DD} = 10V, V_{O} = 1V \text{ or } 9V$ 3.0 4.5 3.0 3.0 V $V_{DD} = 15V, V_{O} = 1.5V \text{ or } 13.5V$ 4.0 6.75 4.0 4.0 $V_{DD} = 5V, V_O = 0.5V \text{ or } 4.5V$ VIH HIGH Level 3.5 3.5 2.75 3.5 $V_{DD} = 10V, V_O = 1V \text{ or } 9V$ Input Voltage 7.0 7.0 7.0 V 5.5 $V_{DD} = 15V, V_{O} = 1.5V \text{ or } 13.5V$ 11.0 11.0 8.25 11.0 LOW Level Output $V_{DD} = 5V, V_{O} = 0.4V$ 0.64 0.51 0.88 0.36 IOL $V_{DD} = 10V, V_{O} = 0.5V$ 0.9 Current 1.6 1.3 2.25 mΑ V_{DD} = 15V, V_O = 1.5V (Note 3) 4.2 3.4 8.8 2.4 HIGH Level Output $V_{DD} = 5V, V_{O} = 4.6V$ -0.64 -0.51 -0.88 -0.36 I_{OH} Current $V_{DD} = 10V, V_{O} = 9.5V$ -2.25 -0.9 mΑ -1.6 -1.3 $V_{DD} = 15V, V_{O} = 13.5V$ (Note 3) -4.2 -3.4 -8.8 -2.4 $V_{DD} = 15V, V_{IN} = 0V$ Input Current -0.1 -10--0.1 -1.0 I_{IN} μΑ V_{DD} = 15V, V_{IN} = 15V 10⁻⁵ 0.1 0.1 1.0

Note 3: I_{OL} and I_{OH} are tested one output at a time.

CD4724BC


C	
ш	
4	
N	
5	
X	
X	
O	


AC Electrical Characteristics (Note 4)


Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{PHL} , tPLH	Propagation Delay	$V_{DD} = 5V$		200	400	
	Data to Output	$V_{DD} = 10V$		75	150	ns
		$V_{DD} = 15V$		50	100	
t _{PLH} , t _{PHL}	Propagation Delay	$V_{DD} = 5V$		200	400	
	Enable to Output	$V_{DD} = 10V$		80	160	ns
		V _{DD} = 15V		60	120	
t _{PHL}	Propagation Delay	$V_{DD} = 5V$		175	350	
	Clear to Output	$V_{DD} = 10V$		80	160	ns
		V _{DD} = 15V		65	130	
t _{PLH} , t _{PHL}	Propagation Delay	$V_{DD} = 5V$		225	450	
	Address to Output	$V_{DD} = 10V$		100	200	ns
		V _{DD} = 15V		75	150	
t _{THL} , t _{TLH}	Transition Time	$V_{DD} = 5V$		100	200	
	(Any Output)	$V_{DD} = 10V$		50	100	ns
		V _{DD} = 15V		40	80	
T _{WH} , T _{WL}	Minimum Data	$V_{DD} = 5V$		100	200	
WIT WE	Pulse Width	$V_{DD} = 10V$		50	100	ns
		$V_{DD} = 15V$		40	80	
t _{WH} , t _{WL}	Minimum Address	$V_{DD} = 5V$		200	400	
WIT: WE	Pulse Width	$V_{DD} = 10V$		100	200	ns
		$V_{DD} = 15V$		65	125	
twн	Minimum Clear	$V_{DD} = 5V$		75	150	
with	Pulse Width	$V_{DD} = 10V$		40	75	ns
		$V_{DD} = 15V$		25	50	
SU	Minimum Setup Time	$V_{DD} = 5V$		40	80	
-30	Data to E	$V_{DD} = 10V$		20	40	ns
	Bala to E	V _{DD} = 15V		15	30	
t _H	Minimum Hold Time	$V_{DD} = 5V$		60	120	
'n	Data to E	$V_{DD} = 10V$		30	60	ns
	Data to E	V _{DD} = 15V		25	50	110
t _{SU}	Minimum Setup Time	$V_{DD} = 5V$		-15	50	
-50	Address to E	$V_{DD} = 10V$		0	30	ns
		$V_{DD} = 15V$		0	20	113
	Minimum Hold Time			-50	15	
Н	Address to E	$V_{DD} = 5V$		-30 -20	10	00
	Address to E	$V_{DD} = 10V$		-20 -15	10 5	ns
	Dower Dissinction	V _{DD} = 15V			Э	
C _{PD}	Power Dissipation	Per Package		100		pF
	Capacitance	(Note 5)				
C _{IN}	Input Capacitance	Any Input		5.0	7.5	pF

Note 4: AC Parameters are guaranteed by DC correlated testing.

Note 5: Dynamic power dissipation (P_D) is given by: $P_D = (C_{PD} + C_L) V_{CC}^2 f + P_Q$; where $C_L = load$ capacitance; f = frequency of operation; for further details, see Application Note AN-90, "Family Characteristics".

