—2 CYPRESS

Building an EZ-Host/OTG Project From Start to Finish

Introduction

The CY3663 EZ-Host and EZ-OTG Development Kit contains
a full set of standard GNU-based tools. These tools have
been ported to our CY16 processor-based EZ-Host and
EZ-OTG products. This application note describes how to
build a simple stand-alone project with these tools that will run
in either debug mode or out of an EEPROM. This document
is intended to help those less familiar with the GNU devel-
opment environment. It is not intended to be a complete tools
reference, but rather a quick example to get you familiar with
the tools.

The example in this document is presented from start to finish
and is all-inclusive. To make things easier to follow, this
example does not have any dependencies on ROM BIOS
code (except for initialization), Frameworks, Makefiles, or any
other presupplied code that the design examples in our
CY3663 development kit use. It is strongly recommended that
production designs do not start from scratch as this example
does. Instead, production designs should rely heavily on our
BIOS and Frameworks code. For more information on devel-
oping around the BIOS and Frameworks, please see the book
USB Muilti-Role Device Design by Example included in the
CY3663 development kit.

Required Tools Components

Below is a list of tools that are required to build and run the
example in this application note (or any other project, for that
matter). All of the required tools listed below, including many
other tools, are installed automatically when the CY3663 CD
is installed. In fact, these tools have many environmental
dependencies in order to work properly that are also automat-
ically handled by the install, so please properly install the
CY3663 CD before attempting to build an EZ-Host or
EZ-OTG project. For complete documentation on all utilities
below, including standard RedHat GNUPro documentation,
please refer to the CY3663 documentation folder.

» cy16-elf-gcc: Port of standard GNU GCC compiler
» cy16-elf-as: Port of standard GNU GAS assembler
» cy16-elf-Id: Port of standard GNU LD linker

» cy16-elf-objdump: Port of standard GNU objdump

cy16-elf-objcopy: Port of standard GNU objcopy
cy16-elf-gdb: Port of standard GNU GDB debugger
cy16-elf-libremote: Port of standard GNU libremote

.

scanwrap: Cypress-developed utility
qtui2c: Cypress-developed utility
« BASH_ENV.BAT: Cypress-developed batch file

Cypress Semiconductor Corporation .

3901 North First Street .

Buttons and Lights Example Description

To properly understand how to use these tools, it is best to
actually build a simple project. This application note uses the
ever-popular Buttons and Lights as that example. Buttons
and Lights is a very basic application so as to allow focus to
remain on the tools, but at the same time presents a visual
indication that the code is running. It should be noted that this
is not the same Buttons and Lights example presented in the
USB Multi-Role Device Design By Example book.

The Buttons and Lights example presented here can run on
either the EZ-Host or EZ-OTG stand-alone boards shipped
with the CY3663 development kit. When this code is running,
pressing the S5 button will turn ON LEDs D1, and D9:D7.
When button S1 is pressed, these LEDs will turn off.

The EZ-Host and EZ-OTG stand-alone boards indirectly
memory map these LEDs and buttons through the U8 CPLD.
Therefore, this example bit bangs a standard memory
interface to RD/WR the CPLD. A complete description of
these boards, including the CPLD indirect memory map, is
included in the CY3663 Hardware Users Manual included
with the CY3663 kit.

Steps for building the Buttons and Lights example are
covered in later sections of this application note.

Buttons and Lights Project Files

Below is a short list of the files that make up this Buttons and
Lights example.

* BAL.c

+ StartupNoBIOS.s or StartupWithBIOS.s
» cy7¢67200_300.h

» BAL.Id

BAL.c File Description

This file contains a simple main routine along with functions
to read and write the CPLD. The main routine is just a
“while(1)” loop that looks for button presses and illuminates
the LEDs as appropriate.

StartupNoBIOS.s/StartupWithBIOS.s File Description

The default GNU start-up code is generally contained within
crt0.s. The crt0.s file contains a lot of code overhead in
functions that are rarely used for embedded applications.
Therefore, we will supply our own start-up code in a.s file and
instruct the compiler to use it instead of the default crt0.s file.
This will save quite a bit of code space. For more information
on minimizing code space by not using crt0.s, please see the
OTG-Host Boot Code Design white paper included in the
CY3663 kit.

San Jose, CA 95134 . 408-943-2600
August 20, 2003, rev. 0.A

Building an EZ-Host/OTG Project From Start to Finish

The most important portion of our start-up file is the _start
routine. This routine is intended to be run before main and is
loaded at the ORG location specified in the BAL.Id file. In its
simplest form, the _start code is just a jump to main. Code at
this location or the start of main will generally determine how
the task or main function interacts with the BIOS.

BAL.ld File Description

BAL.ld is a modified version of the default linker script. The
linker script contains commands for the linker to execute and
describes how the sections in the input files should map into
the output file. For example, the linker script tells where the
base address for code should reside.

A default linker script can be automatically generated by
typing “cy16-elf-Id --verbose > BAL.Id.” This command will
generate a default linker script file called BAL.Id that contains
everything our project needs and more. There are a few
simple changes that must be made to this default script for
our project (and other EZ-Host/OTG projects). These small
changes are listed below.

1. Change the base address for our code to start at. This can
be done by changing the “. =” statement following
SECTIONS to 0x1000. The 0x1000 location ensures that
we allow enough room for the GDB stub to be loaded when
in debug mode.

2. Anything that is not code in the file must be commented
out, because otherwise a parse error will occur when
linking. This includes the GNU version information in the
top of the default file and the “=======" lines at the top
and bottom of the file.

Buttons and Lights Without BIOS

The StartupNoBIOS.s file never returns control of the
processor to the BIOS. The BIOS first executes some initial-
ization routines such as setting up the stack and loading the
program. Then program execution begins at “_start” as
defined in the StartupNoBIOS.s file. StartupNoBIOS.s
contains a jump to main at “_start” where main is just a
“‘while(1)” loop that never returns.

Buttons and Lights With BIOS

Our Buttons and Lights example does not require the BIOS
to be running in the background (except initialization).
However, there are still some debug benefits to having the
BIOS running. When the BIOS is running, we can use some
simple Cypress-developed utility programs such as
gtsdump/qtudump to dump memory and gtsarena/qtuarena
to give memory usage information.

If BIOS is not running in the background, the BIOS IDLE chain
will not to execute. This means BIOS will never look for any
SCAN vectors on the UART or USB port. It is a requirement
for the BIOS to execute and look for SCAN vectors over the
UART or USB in order to use qtuload/gtsload or
gtuarena/gtsarena (see Binary Utilities Reference for more
information on these utilities).

There are many different ways to design our Buttons and
Lights application to run concurrently with BIOS running in the
background. Most of the suggested ways such as adding the
Buttons and Lights task into the IDLE chain are described in

USB Multi-Role Device Design by Example. We execute the
BIOS IDLE Task in a periodic TimerO Interrupt.

To allow TimerO to properly interrupt at a given interval and
vector to the proper ISR code, StartupWithBIOS.s makes the
appropriate initialization in “_start” before returning to BIOS
to complete initialization. In this example, we return to BIOS
instead of jumping directly to main. This is required so that
BIOS will finish initialization of the UART and USB. Instead of
jumping to main, our start-up code replaces the IDLER ISR
vector address with main. The IDLER ISR (now main) is
automatically called by BIOS upon finishing initialization.

Building the Example for Running with the
Debugger (GDB)

If a program is built to run with the debugger, then the build
process is different from code being built to run out of an
EEPROM.

Running code with GDB will allow for breakpoints, single
stepping, and other standard debug activities, in addition to
running Insight, the graphical user interface for GDB. To run
code with GDB, an Executable Linker Format (ELF) must be
generated. This is the default format of the GCC compiler and
is file-extension-independent. The only requirement is that
debug symbols need to be turned on. The following command
line instruction will generate a proper ELF file for use with
GDB. It is assumed that the CY3663 CD has been installed
and that BASH_ENV.BAT has been invoked to create a bash
shell environment. In addition, change the working directory
to that containing the Buttons and Lights files. Full details of
how to actually run the debugger are listed in both the
CY16.PDF and the USB Multi-Role Device Design by
Example book.

It should be noted that even though StartupNoBIOS.s is used,
the GDB stub that is loaded for debug will still execute the
BIOS IDLE chain. This is required to allow debug communi-
cation over USB or the UART.

[cy]l$ cyl6-elf-gcc -nostartfiles -g -TBAL.1ld
StartupNoBIOS.s BAL.c -o BAL

* The above command will generate afile called “BAL” in the
ELF format. This file can then be used as an input when
invoking GDB.

* The “-nostartfiles” parameter tells the compiler/linker not to
use the default start-up code. Instead, we will supply
StartupWithBIOS.s as the start-up code to be used.

The “-g” parameter instructs the compiler to turn on debug
symbols.

The “-T” parameter tells the linker to use our supplied linker
script instead of the default.

The “-0” parameter is followed by the output file name.

Building the Example for Running out of the
EEPROM

The build process is slightly more involved to create an image
that is ready to run out of an EEPROM. All of the steps are
listed below and can be entered at the command line in a
bash shell, or included in a script or Makefile. Since this
project is so small, a Makefile is not needed. For a Makefile

Building an EZ-Host/OTG Project From Start to Finish

example, please see the CY3663 design examples that use
Makefiles that contain similar calls as those listed below.

Below is a list of the steps required to build an
EERPOM-ready image.

It should be noted that StartupNoBIOS is used as the default
startup file in this example but StartupWithBIOS may be used
without any additional changes.

—_

. Open a bash shell.

Run BASH_ENV.bat by clicking on the shortcut created
under Programs/Cypress/OTG-Host in the start menu
after the CY3663 CD has been installed. Once a Bash
shell is opened, a “[cy]$” prompt will be displayed.

In addition, change the working directory to that which
contains the Buttons and Lights files.

N

. Assemble the start-up file into a linkable object file.
[cy]$ cy16-elf-as StartupNoBIOS.s -o StartupNoBIOS.o.
. Compile the .C file into a linkable object file (ELF file).
[cy]$ cy16-elf-gcc -c -nostartfiles BAL.c -0 BAL.o.
. Link both of the object files.
[cy]$ cy16-elf-Id -TBAL.Id StartupNoBIOS.o BAL.o -0 BAL.
5. Obtain a Listing file (optional).
[cy]$ cy16-elf-objdump -D -z -t --source BAL > BAL.Ist.
6. Convert the ELF file format to a Binary file format.
[cy]$ cy16-elf-objcopy -O binary BAL BAL.bin.
7. Add appropriate SCAN signatures to the Binary file.
[cy]$ scanwrap BAL.bin BAL_Scan.bin 0x00001000.
8. Download the Binary file to the EEROM.
[cy]$ qtui2c BAL_Scan.bin -f.

Below is a detailed description of each of the above command
line entries.

1. BASH_ENV.bat.

* BASH_ENV.bat will set up all of the required environment
variables and then invoke a bash shell.

2. cy16-elf-as -StartupNoBIOS.s -0 StartupNoBIOS.o
» The “-0” parameter specifies the desired output file name.

w

N

3. cy16-elf-gcc -¢ -nostartfiles BAL.c -o BAL.o

“«

» The “-c” parameter causes a compile/assemble without
running the linker.

The “-nostartfiles” parameter tells the compiler/linker not to
use the default start-up code.

» The “-0” parameter specifies the desired output file name.
4. cy16-elf-Id -TBAL.Id StartupNoBIOS.o BAL.o -0 BAL

* The “-T” parameter tells the linker to use our supplied linker
script instead of the default.

* The “-0” parameter specifies the desired output file name.
5. cy16-elf-objdump -D -z -t --source BAL > BAL.Ist.
This step is not required, but is nice to have.

* The “-D” parameter causes the contents of all sections to
be disassembled.

» The “-z” parameter causes blocks of zeros to be disas-
sembled.

* The “t” parameter prints the symbols table entries of the
file.

» The “--source” parameter displays source code intermixed
with disassembly, if possible.

» The “>” parameter directs the output to a file with name
provided after the “>" parameter.

6. cy16-elf-objcopy -O binary BAL BAL.bin.

* The “-O” parameter writes an output file in the format
specified after the “-O” parameter. In this case, we specify
the “binary” format.

7. scanwrap BAL.bin BAL_Scan.bin 0x00001000.

The address parameter is the base address where the
program is to be loaded. This is the same address that was
added into to *.Id file and needs to be the address where
the _start routine in the start-up file resides.

8. gtui2c BAL_Scan.bin f.

Please see the Binary Ultilities Reference document for
detailed instructions on how to run this utility. Basically, the
EZ-Host or EZ-OTG mezzanine card should have all DIP
switches OFF and then the board should be powered with
the USB cable plugged into peripheral port 2A. Next, the
DIP switches should be set to select the appropriate
EEPROM to download code to. An example is to set
switches [6:3] ON and [2:1] OFF (0bXX111100) which
selects EEPROM#4. Finally, qtui2c should be run followed
by a board reset. At this point the Buttons and Lights code
should be running.

The “-f” parameter specifies that the EEPROM is 4K-64K.
If the EERPOM is 256-2K, no “-f’ parameter is required.

References

All documents listed below that were referenced throughout
this application note can be found in the CY3663 Devel-
opment Kit CD image.

1. USB Multi-Role Device Design By Example

2. Binary Utilities Reference.pdf

3. CY3663 Hardware Users Manual.pdf

4. Frameworks Reference Manual.pdf

5. CY16.pdf

6. GNUPro Toolkit Documentation (several documents)

Conclusion

Once you have built and run the Buttons and Lights example
presented in this application note, you should have a basic
understanding of how to get up and running with the CY16
toolset. The next step is to start learning about the EZ-Host
and EZ-OTG BIOS and Frameworks. These two items will
provide a very comprehensive foundation on which to build
your application code. In addition, Frameworks relies heavily
on Makefiles that in turn use some of the basic commands
discussed throughout this document.

—— Building an EZ-Host/OTG Project From Start to Finish

Source Code

BAL.c
#include "cy7c67200_300.h"

typedef unsigned short uintlé;

#define WRITE REGISTER (address, value) (*(volatile uintl6é *) (address)) = ((uintl6) (value))
#define READ_ REGISTER (address) (* (volatile uintl6é *) (address)

#define INPLACE_OR (address, value) __asm("or [%0], %1" : : "p" ((address)), "g" ((value)))
#define INPLACE AND (address, value) _ asm("and [%0], %1" : : "p" ((address)), "g" ((value)))

void writeCPLDADX (uintl6 address)

INPLACE_AND(GPIOl_OUT_DATA REG, ~0x0008); /* B0 = 0 */
INPLACE_AND (GPIOl_OUT_DATA REG, ~0x0020); /* nCS = 0 */
INPLACE_AND (GPIO1_OUT_DATA REG, ~0x0040); /* nWR = 0 */
INPLACE_OR (GPIOO_DIR_REG, O0x00FF); /*Write Address*/

WRITE REGISTER (GPIOO_OUT_DATA REG, address);

INPLACE_OR (GPIOl_OUT DATA REG, 0x0040); /* nWR = 1 */
INPLACE OR (GPIOl OUT DATA REG, 0x0020); /* nCs = 1 */
INPLACE_OR (GPIOl_OUT DATA_REG, 0x0008); /* B0 = 1 */

void writeCPLDDATA (uintl6 data)
{

INPLACE OR (GPIOl OUT DATA REG, 0x0008); /* B0 =1 */
INPLACE_AND (GPIOl_OUT DATA_REG, ~0x0020) ; /* nCs = 0 */
INPLACE_AND (GPIOl_OUT DATA REG, ~0x0040); /* nWR = 0 */
INPLACE_OR (GPIOO0_DIR_REG, O0xO00FF); /*Write Address*/

WRITE_REGISTER (GPIOO_OUT_DATA REG, data);

INPLACE_OR (GPIO1_OUT DATA_REG, 0x0040); /* nWR = 1 */
INPLACE_OR (GPIO1_OUT DATA REG, 0x0020); /* nCs = 1 */
INPLACE OR (GPIOl OUT DATA REG, 0x0008); /* B0 = 1 */

int readCPLDDATA ()

uintl6é data;

INPLACE OR(GPIOl_OUT DATA REG, 0x0008); /* B0 =1 */
INPLACE_AND (GPIO1_OUT_DATA REG, ~0x0020); /* nCS = 0 */
INPLACE_AND (GPIO1_OUT_DATA REG, ~0x0080); /* nRD = 0 */
INPLACE_AND (GPIOO_DIR_REG, OxFF00); /*Write Address*/
data = (READ_REGISTER (GPIOO_IN_DATA REG) & 0x00FF);
INPLACE OR(GPIOl OUT DATA REG, 0x0080); /* nWR = 1 */
INPLACE_OR(GPIOl_OUT_DATA REG, 0x0020); /* nCsS = 1 */
return data;

}

void writeCPLD (int address, int data)

{
writeCPLDADX (address) ;
writeCPLDDATA (data) ;

}

int readCPLD(int address)

{
writeCPLDADX (address) ;
return readCPLDDATA() ;

}

int main ()

{
uintl6 button_read = 0;
INPLACE AND (UART_CTL REG, OxFE); /* Disable UART to free up GPIO 6 & 7 on EZ-OTG for CPLD*/
INPLACE OR(GPIOO OUT DATA REG, O0x00FF); /* Data Port */
INPLACE OR (GPIO1 OUT_DATA REG, O0x00ES8); /* A0 = nCS = nRD = nWR = 1 */
INPLACE_OR (GPIOO0_DIR_REG, O0xO00FF);

(

INPLACE_OR(GPIOl_DIR REG, OxO00FF);

Building an EZ-Host/OTG Project From Start to Finish

button_read = readCPLD(0x0000) ; /* Read Buttons */
if ((button_read & 0x01) == 0) { /* If Button S1 (PB_UP) is pressed, turn LEDs OFF */
writeCPLD (0x7, OxFF);
writeCPLD (0x1, OXFF); /* Clear Button S1 Status */
}
if ((button_read & 0x08) == 0) { /* If Button S5 (PB_DN) is pressed, turn LEDs ON */
writeCPLD (0x7, 0x00);
writeCPLD (0x4, OxFF); /* Clear Button S5 Status */
}
}
1}
StartupNoBIOS.c StartupWithBIOS.c
; File: startup.s ; File: startup.s
; Declare the main function. ; Declare the main function.
.global main .global main
.section .text .section .text
.global _start .global _start
_start: _start:
; Jump to the main function. ; Jump the main function.
Jmp main ; Jmp main
; End of file: startup.s ; Replace TMRO ISR with tmrO_isr
mov [0], tmr0_isr

; Enable TMRO INT
or [0xC00e], 0x0001

; Replace IDLER ISR with main.Now BIOS IDLE chain is only called in TMRO ISR.
mov [(71*2)],main

ret

; int 70 enables the IDLE_INT. This allows bios to execute periodically

; since main never returns. Now we can use debug USB port and UART.
tmr0_isr: ; TMRO ISR, now calls BIOS IDLE
push [0xc000] ; Push Flags Register
int 73 ; PUSHALL_INT
int 70 ;7 IDLE_INT (will check UART and USB for Scan signitures)
int 74 ; POPALL_INT
mov [0xc010], 10000 ; Load TMRO so that it will expire every 10ms
pop [0xc000] ; Pop Flags Register
sti
ret

; End of file: startup.s

All product and company names mentioned in this document are the trademarks of their respective holders.
Approved AN048 8/20/03 kkv

© Cypress Semiconductor Corporation, 2003. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.

